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Figure 1: TapType is a portable, wireless text entry system that brings touch typing to everyday surfaces. TapType’s two wrist-
bands sense vibrations arising from finger taps, from which our Bayesian classifier estimates finger probabilities. Our text
decoder then estimates input character sequences by fusing these predictions with the priors of an n-gram language model
given a key-finger mapping. TapType is suitable for several applications, including text entry (a) on a phone or (b) on a tablet
using the surrounding surface for increased typing convenience, (c) in conjunction with audio feedback only in mobile sce-
narios, or (d) in situated Mixed Reality to complement typing with passive haptic feedback.

ABSTRACT
Despite the advent of touchscreens, typing on physical keyboards
remains most efficient for entering text, because users can lever-
age all fingers across a full-size keyboard for convenient typing.
As users increasingly type on the go, text input on mobile and
wearable devices has had to compromise on full-size typing. In this
paper, we present TapType, a mobile text entry system for full-size
typing on passive surfaces—without an actual keyboard. From the
inertial sensors inside a band on either wrist, TapType decodes and
relates surface taps to a traditional QWERTY keyboard layout. The
key novelty of our method is to predict the most likely character se-
quences by fusing the finger probabilities from our Bayesian neural
network classifier with the characters’ prior probabilities from an
n-gram language model. In our online evaluation, participants on
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average typed 19 words per minute with a character error rate of
0.6% after 30 minutes of training. Expert typists thereby consistently
achieved more than 25WPM at a similar error rate. We demonstrate
applications of TapType in mobile use around smartphones and
tablets, as a complement to interaction in situated Mixed Reality
outside visual control, and as an eyes-free mobile text input method
using an audio feedback-only interface.
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1 INTRODUCTION
Physical keyboards have been the go-to option for typing large
amounts of text, especially since their commoditization alongside
personal computers. Such keyboards are designed to support fast
and bimanual use, while the arrangement of keys allows our hands
and fingers to unfold their dexterous capabilities across the full
space [13, 17]. A welcome side effect of physical keyboards is their
ability to support prolonged use, allowing the user’s arms to rest
on a surface during continued interaction while providing passive
haptic feedback. This property has allowed them to become a key
factor in accomplishing productivity tasks [28].

With rising popularity of wearable and mobile devices such as
smartphones, new types of keyboards have had to compromise on
many of these desirable properties in order to improve portability.
Since touch-screen devices integrate input and output into the same
surface for direct interaction, keyboards necessarily need to fit the
available real estate and cannot stretch to full size any longer. As a
result, today’s keyboards often appear shrunk [67] or sparse [29, 51],
which affords text input in mobile situations on the go, albeit at the
cost of reduced comfort, accuracy, and speed.

To compensate for the input error that comes with smaller lay-
outs that accommodate few fingers, smartphones implement lan-
guage models to aid in detecting intended keys [21, 38, 67]. Re-
searchers have used language models in conjunction with input
decoding to port keyboard entry to even smaller surfaces, such as
watches [66], and fingertips [74, 75]. These model-based implemen-
tations have since been ported back to soft keyboards on tablets
that approach full-size input [55], but have also been appropriated
to create novel keyboard designs (e.g., One Line Keyboard [41] or
Invisible Typing [57, 80]).

In this paper, we introduce TapType, a novel text entry system
that supports opportunistic, mobile, and full-size touch typing on
flat surfaces. Users simply wear a TapType sensor band on either
wrist, place their hands down, and start typing. TapType registers
taps through inertial sensors and wirelessly offloads events for pro-
cessing to our backend that predicts entered characters. TapType’s
sole requirement on wrist sensors makes it a suitable portable text
entry method with the unobtrusive and socially accepted form
factor of a fitness tracker. When typing with TapType, users can
transfer their already practiced and internalized fast and eyes-free
skills of touch typing on a keyboard to any situation on the go. This
makes TapType a promising text entry interface for a wide range
of mobile, desktop, and spatial-computing use cases.

1.1 Decoding text entry from accelerometer
signals at the wrist

Figure 1 shows a user entering text by means of our sensor wrist-
band TapType, one strapped to either wrist. The user types text
much like they would on a touchscreen keyboard—arms resting
on the surface, using all ten fingers, typing away. We designed
TapType to be used for touch typing as taught for text entry on
physical full-size keyboards. This assumption allows us to leverage
users’ existing muscle memory for surface tapping and to associate
pre-defined groups of characters with specific fingers. Our decoding
method then fuses an estimated probability mass function over all

fingers for each tap with the priors from an n-gram language model
to predict the typed character sequence.

When typing, each tap on the surface causes subtle vibrations
that are conducted by the bones in the hand and register with
the two inertial measurement units (IMUs) inside the wristband
as we showed in our previous project TapID [46]. Advancing our
previous design, TapType picks up on ranging tap intensities, so that
tapping requires little intensity, remains non-strenuous, and can
thus continue for a prolonged amount of time. The key component
that enables the reliable decoding of taps with TapType is our novel
Bayesian deep neural network classifier that estimates a better
calibrated probability distribution over the fingers following a tap.

Complementing our Bayesian deep network architecture is our
probabilistic text entry decoder, which consumes the finger prob-
abilities to output a list of predicted character sequences as sug-
gestions. Our decoder first relates finger probabilities to groups of
alphabet characters according to ten-finger touch typing. Then it
combines the character-specific probabilities with the prior distri-
bution from an n-gram language model. Our combined approach
thus narrows the ambiguous output to a choice of typed words
ordered by the estimated likelihood.

For an offline evaluation of our tap classifier and decoder on a
challenging dataset, we conducted an experiment where partici-
pants typed displayed sentences on a piece of paper on top of a large
sensor without receiving any feedback. Fusing the output of our
tap classifier, our decoder pipeline predicts the correct target word
in 9 out of 10 cases within the top 5 suggestions. This compares to
only 64% recall for a tap classifier based on a non-Bayesian neural
network of similar complexity as used in TapID [46].

In an end-to-end text entry study, we also evaluated TapType
online with 10 participants. Using our system, participants on av-
erage typed text at a rate of 19words per minute and a character
error rate (CER) of 0.6%. Expert touch typists consistently achieved
an entry rate of more than 25WPM in our study at a comparably
low error rate. With respect to TapType’s word suggestion, partici-
pants picked the correct word in 94% of all cases when selecting
a suggestion. Across all suggestions, the selected word was at the
top of the suggestion list 94 out of 100 times, ranked second 5 out
of 100 times, and was lower in 1 of 100 cases.

Finally, we present examples of TapType’s potential use in three
application scenarios as shown in Figure 1. First, TapType’s wireless
operation affords its use as an extension of mobile devices such
as smartphones and tablets as shown in Figure 1a&b, respectively.
In both cases, the user has placed the touch device on the table in
front of them to type text, using the surface around or in front of
the device for more convenient text input while resting their arms,
which also frees screen estate for displaying additional content.
Second, we developed an audio feedback-only interface for TapType
that enables text input on the go (Figure 1c). Here, a user quickly
responds to incoming messages with TapType by coopting adjacent
surfaces. Our audio component thereby reads out partial phrases,
word suggestions, and complete sentences, which makes it suitable
for quick message responses on the go. Third, TapType can also
address a central challenge in situated mixed reality scenarios. By
opportunistically appropriating passive surfaces, users can leverage
a full-size area for typing as shown in Figure 1d.
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1.2 Contributions
Collectively, we make four main contributions in this paper:

• a novel wristband-based text entry system that enables full-
size ten-finger typing on flat surfaces. Our method only takes
the microvibrations of surface taps captured by accelerome-
ter sensors inside portable and wireless wristbands as input.

• a Bayesian neural network architecture to decode touch
events and derive a reliable probability distribution over the
fingers of the hand. We evaluated our network in an offline
experiment on data gathered from 10 participants who typed
on a printed keyboard layout atop a touch sensor, delivering
taps unprompted and thus with varying intensity.

• a language decoder that fuses the character likelihoods de-
rived from the finger probabilities with the estimated likeli-
hoods for a character from a language model.

• an online study where 10 participants typed sentences from
MacKenzie and Soukoreff’s phrase set [44] wearing TapType
bands. On average, participants typed at a rate of 19.2WPM
with a CER of 0.6% in the third block (fastest participant:
26WPM, CER=0.0%; slowest: 13WPM, CER=0.6%).

2 RELATEDWORK
TapType is related to mobile text entry systems, inertial sensor-
based input detection, and Bayesian deep learning.

2.1 Mobile & wearable text entry systems
Touchscreen input decoding. With the arrival of smartphones, de-
signing text entry systems faced several challenges. Soft keyboards
replaced physical keys, which enabled more compact devices yet
raised questions on input reliability, accuracy, and speed, as display-
ing full QWERTY keyboards on mobile touchscreens leads to small
key sizes. Goodman et al. introduced a speech-recognition inspired
decoder that combined a language model with a probabilistic key
press model [21]. The model estimated individual key likelihood
by fitting a multivariate Gaussian distribution to hits over a given
key, which alleviates the notion of rigid key boundaries and led to
lower input error. Subsequent approaches include geometric pattern
matching [38] and Gaussian processes [69], trained on gathered
touch data to directly predict key probabilities before combining it
with a language model. The latter approach resembles our method,
as we directly estimate a probability distribution over all characters
for a given input signal.

Following a large diversity of device form factors, researchers
explored decoding and entry performance for various touchscreen
sizes [67]. Optimized for very small screens, VelociWatch facili-
tated an entry rate of 17WPM [66]. Gordon et al. showed gesture
input can reach 24WPM on smartwatches [22]. Other work has
increased typing efficiency on small screens by grouping characters
(e.g., a T9-like keyboard that reached 19WPM [52]). Others have
required repeated input to first pre-select and then make a final
selection on an enlarged region for each character (e.g., ZShift [40],
Splitboard [29], Zoomboard [51]).

Touch-based input (indirect or without a screen). Moving the input
away from size-constrained touchscreens frees additional real es-
tate for displaying output. In turn, everyday surfaces of passive

objects can be appropriated for input, which provide passive haptic
feedback and at the same time grant more space for bimanual (text)
input. For mobile application scenarios, we require technologies
that sense and understand touch from the user’s point of view.

Due to occlusion and motion artifacts, hand tracking and par-
ticularly sensing touch input using RGB cameras remains difficult.
To detect typing events on a surface, ARKB detects collisions be-
tween a fiducial marker-tracked surface and colored fingers [39].
Richardson et al.’s temporal neural network decoded typing from
finger touches on a flat surface using a motion capture system [55],
reporting a performance that approaches physical keyboards in
an offline study. Apart from the challenges related to reliability,
vision-based methods may also raise privacy concerns.

For non-optical input detection, Goldstein et al. decoded text
from a finger input sequence using trigrams [20], speculating that
this could be implemented with pressure sensors in the future. Us-
ing an inertial measurement unit (IMU) inside a ring, QwertyRing
detects typing with the index finger on an imagined keyboard on a
flat surface [23], estimating character likelihoods from finger orien-
tations. Our previous project TapID [46] demonstrated touch and
finger detection on passive surfaces using accelerometers inside a
wristband, which complemented the hand tracker in a VR headset to
enable typing under visual control. TapType substantially advances
TapID’s recognition model through our Bayesian tap classifier and,
in conjunction with our text decoder, provides a text entry system
without the need for camera-based tracking or input under visual
control in the first place.

Decreasing the size of the input areas can increase the portability
of text entry and allow users to type anywhere. Related efforts
have detected finger touches to register character input in various
configurations, such as by appropriating one (12WPM) [75] or
both fingertips (23WPM) [74] as touchpads for eyes-free selection
of individual characters or grouped characters [72]. PinchType
engages all fingers, selecting character groups from finger pinches
that correspond to touch typing on a QWERTY keyboard [16].
Complemented by marker-based hand tracking to robustify pinch
detection, their system achieved a mean rate of 12.5WPM.

Mid-air text entry. Parallel to touch-based text entry, another thread
in the related work investigates mid-air typing. For example, ATK
decodes 10-finger typing in mid-air from a LeapMotion sensor
placed below [77]. Vulture is a word-gesture keyboard that tracks
the user’s hands with a marker-based system [45]. Other solu-
tions have used the built-in cameras of mixed reality headsets to
detect typing, such as Dudley et al.’s approach on a Microsoft
HoloLens [15]. SCURRY is a glove device that controls a cursor on
a virtual keyboard using inertial sensing to capture mid-air typing
motions [35]. While mid-air input is promising for typing, espe-
cially in mixed reality, it is also known to lead to fatigue over longer
periods of time [31]. To better support input over a prolonged pe-
riod, TapType builds on our previous approach of leveraging passive
surfaces [46], which not just allows users to support themselves,
but offers passive haptic feedback during input [8, 30].

Non-spatial sensor-based text entry. Formobile text entry, researchers
have proposed alternatives to direct text entry with varying sensing
modalities. WrisText takes input through joystick-like wrist mo-
tions that are detected by infrared sensors inside the band, reaching
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9.9WPM averaged across a five-day study. TapStrap is a commercial
solution that affixes an inertial sensor ring to each finger to detect
chord typing on a surface [56]. Apart from their target use-case of
chording input, the company has released a video demonstration
of QWERTY-like text entry with two TapStrap devices. Similarly,
Telemetring uses inductive telemetry sensing around each finger
for tap detection [61], and uses chords for text entry. While chords
allow a one-to-one mapping between keys and finger combinations,
they require users to learn a new dictionary. Both systems rely on
the direct instrumentation of the fingers resulting in devices that
may be obtrusive, noticeable, and may limit certain interactions.
In contrast, TapType consists of only two light-weight wristbands,
which are widely socially accepted for wearable technology.

Touch typing and memorizing text entry. Previous research has
shown that skilled typists internalize a mental model of the rel-
ative keyboard layout [53, 57, 80]. This allows them to transfer
eyes-free typing skills from a physical keyboard to typing on a flat
surface [18]. TapType benefits from this by leveraging the already
acquired spatial input memory [25] and muscle memory. Since we
only consider the identity of the tapping finger and neglect tap
positions, our method tolerates varying relative positions of typing
and requires no explicit vertical movement of the fingers.

2.2 Probabilistic language models
Language models use the statistics inherent in language to improve
text entry performance. Goodman et al.’s n-gram language model
estimated the prior probability 𝑝 (𝑠) for a given input string 𝑠 con-
sisting of characters 𝑦1 . . . 𝑦𝑙 [21]. N-gram models approximate this
probability under the Markov assumption that a character only
depends on the previous 𝑛 − 1 letters. 𝑝 (𝑠) is then calculated as
𝑝 (𝑠) = ∏𝑙

𝑖=1 𝑝 (𝑦𝑖 |𝑦1 . . . 𝑦𝑖−1) ≈
∏𝑙
𝑖=1 𝑝 (𝑦𝑖 |𝑦𝑖−(𝑛−1) . . . 𝑦𝑖−1).

The estimates 𝑝 (𝑦𝑖 |𝑦𝑖−(𝑛−1) . . . 𝑦𝑖−1) stem from a count of letter
sequence appearances in a training corpus. In the case of insufficient
data, suitable smoothing techniques can improve estimates [7]. The
same principle applies on a word level to obtain word n-grams,
which are widely used for word, phrase, and sentence-based text
entry decoders [65, 67, 79].

Word counts can also help to resolve input sequences on ambigu-
ous keyboards where several characters are typed with the same
key [52, 72]. Words of a dictionary matching an input sequence can
be sorted by their frequency [52, 76].

Recent deep neural networks have become a promising alterna-
tive for keyboard decoding [19, 73]. Transformers have achieved
state-of-the-art results on many language modeling tasks [5, 12, 62].

2.3 Bayesian deep learning
Deep neural networks tend to be overconfident in classification
tasks [32], resulting in probability estimates that are much higher
than the actual likelihood that the input belongs to a given class [24].
Bayesian deep learning provides an alternative where the model al-
lows the assignment of an estimated uncertainty to each prediction.
This uncertainty can be divided into epistemic uncertainty (i.e., from
insufficient training data, manifesting itself as uncertainty in the
weights) and aleatoric uncertainty (i.e., from unknown information
that prevents a deterministic assignment to a single class) [11].

𝒚0 𝒚1 𝒚2 . . . 𝒚𝒍

𝑧1 𝑧2 . . . 𝑧𝑙

𝒙1 𝒙2 . . . 𝒙𝒍

Figure 2: Hidden Markov model illustrating dependencies
between a character 𝑦𝑡 typed at time step 𝑡 and the corre-
sponding finger tap 𝑧𝑡 that causes the observed vibration sig-
nals 𝒙𝑡 . The state of the system is described by the character
sequence 𝒚𝒕 entered up and including to character 𝑦𝑡 .

Instead of a point estimate, Bayesian neural networks learn a dis-
tribution over the weights 𝑝 (w|D) from a datasetD using Bayesian
inference and compute a marginal distribution over the output
𝑝 (𝑦 |𝑥,D) for an input 𝑥 [70]:

𝑝 (𝑦 |𝑥,D) =
∫

𝑝 (𝑦 |𝑥,w)𝑝 (w|D)𝑑w (1)

Calculating the posterior distribution 𝑝 (w|D) from the prior
belief 𝑝 (w) requires calculating intractable integrals, for which ap-
proximate inference techniques are used [33]. For Bayesian neural
networks, these include Markov Chain Monte Carlo (MCMC) meth-
ods including the Metropolis-Hasting algorithm [9], variational
approximation methods such as Bayes by Backprop [4], Monte
Carlo Dropout, and others (see Jospin et al.’s overview [32]).

3 PROPOSED INPUT DECODING METHOD
We now introduce our method that enables ten-finger text entry
through touch typing on a flat surface, registered by inertial sensors
inside the wristbands and fused with characters’ prior probabilities
from an n-gram language model. In addition to the ten fingers, our
method detects when users tap the surface with the base of their
palms, which activate ‘delete’ and ‘enter’ operations. Our method
rejects all other inputs including spurious motions and events.

We model our problem in the form of a simple hidden Markov
model (Figure 2): From the accelerometers, we observe the signals
𝑿𝒍 = [𝒙1, 𝒙2 . . . 𝒙𝒍 ] that result from the finger taps 𝑧1, 𝑧2, ..., 𝑧𝑙
when typing the letter sequence 𝒚𝒍 = [𝑦1, 𝑦2 . . . 𝑦𝑙 ]. Our goal is to
estimate the most likely sequence of characters 𝒚𝒍 from 𝑿𝒍 ,

argmax
𝒚𝒍

𝑝 (𝒚𝒍 |𝑿𝒍 ) . (2)

To implement our method, we introduce the three-part pipeline
illustrated in Figure 3: 1) a detection algorithm to register finger taps
during typing, 2) a classification network that outputs a probability
distribution over the five fingers as well as the palm of the hand
and is also used to discard false positive activations, and 3) a text
decoder that builds on a language model to convert the sequence
of probability distributions to a character string.

3.1 Detecting tap candidates from IMU signals
To detect a keystroke in the form of a tap, we model each tap as a
distinct event within a finite-length window, which is centered on
the tap event. We detect the occurrence of a tap by thresholding
the running rate-of-change score 𝑅𝑥 (adapted from our previous
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TapType tap classification network

enterdeletespacetab

classification probability distribution

no-Bayes: all layers deterministic (TapID [45])
1-Bayes: last linear layer Bayesian 
2-Bayes: first conv. & last linear layer Bayesian
all-Bayes: all conv. & linear layers Bayesian

max pooling

average pool

linear layer
softmax

IMU signals
2 sensors x 3 axes

TapType event detection (RCS)

standardization

convolutional layer

batch normalization

leaky ReLU

input
classfalse

true

TapType probabilistic language model

S P L A BI

ringL

thumb

left right left right

palm

other

pinkyR ringR pinkyL indexLmidR

index middle ring pinkyindexreject
input event

middle
left hand right hand

ring pinky

∃f : ̂p(zf |w, ) ≥ ζ

Figure 3: TapType’s processing pipeline consists of three parts: 1) a tap detection algorithm identifying sudden changes in the
IMU signals, 2) a classification network that estimates the probabilities over the five fingers and the palm of the hand, and 3) a
decoder that converts the classifier’s output sequence with priors from an n-gram languagemodel to themost likely character
sequence. We evaluated several architectures with varying placement of the Bayesian layers on their strength in providing
effective probability distributions to the decoder and found 2-Bayes to produce to highest accuracy and robustness.

project TapID [46]). Our score accumulates the absolute change in
the magnitude of the accelerometer signal x𝑠 corresponding to a
sensor 𝑠 (ℓ2-norm over the three coordinate axes of a sensor) across
time 𝑡 over all sensors 𝑆 , attenuating past accumulations through
the exponential reduction factor 𝐷 ,

𝑅𝑥,𝑡 =
1
𝐷
𝑅𝑥,𝑡−1 + Σ𝑠∈𝑆 |∥x𝑠𝑡 ∥2 − ∥x𝑠𝑡−1∥2 |. (3)

Sudden changes in the raw signals cause spikes in the 𝑅𝑥 func-
tion, which indicate contact events. When 𝑅𝑥 exceeds a threshold
at time step 𝑡𝑑 , we determine 𝑡𝑧 = argmax𝑡 ∈[𝑡𝑑 ,𝑡𝑑+𝑇𝑏 ] 𝑅𝑥,𝑡 as the
time of the tap, where 𝑇𝑏 is a fixed backoff period. We then extract
a fixed-size window around 𝑡𝑧 from all three axes of each sensor.

Note that our method supports a liberal threshold, because it sim-
ply serves to reject noisy input. We reject false activations through
spurious events in the subsequent classification step—an event
detected at 𝑡𝑧 may thus never lead to a character decoding. This
initial threshold thus allows our method to reduce computation
and energy dissipation by suppressing processing when idle.

3.2 Bayesian tap classification & rejection
Once a candidate tap event has been identified at 𝑡𝑧 , we input
the resulting window into a classifier network that estimates the
probabilities that the tap resulted from each of the fingers or the
palm. These probabilities also aid rejecting spurious activations.

To provide our text entry decoder with more meaningful proba-
bility estimates, we adapt a convolutional neural network (CNN)
with Bayesian layers to predict the output distribution over the
fingers. This allows our classifier to better convey its confidence
in a certain prediction. The notion of confidence is particularly
important in the case of an input from a finger that is more likely
confused with others (e.g., middle and ring fingers due to similar
IMU signatures) or a type of tap that is not well represented in the
training set. In these cases, our Bayesian neural network will dis-
tribute the probabilities across several classes, allowing the decoder
to consider various options to estimate a character sequence.

For the Bayesian neural network, we employ variational infer-
ence where the posterior distribution over the weights 𝑝 (w|D) is

approximated by a multivariate normal distribution 𝑞(w|𝜽 ) with
a diagonal covariance matrix. Our training procedure minimizes
the evidence lower bound (ELBO) corresponding to the Kullback-
Leibler (KL) divergence between the two.

Reformulated, this becomes

𝜽 ∗ = argmin𝜽 KL [𝑞(w|𝜽 )∥𝑝 (w)] − E𝑞 (w |𝜽 ) [log 𝑝 (D|w)]
= argmin𝜽 L𝐾𝐿 + L𝐸 ,

(4)

where 𝑝 (w) = N
(
w; 0, 𝑰𝜎2𝑝

)
is the prior over the weights [4]. We

then approximate 𝑝 (𝑧 |w,D) by sampling from w𝑖 ∼ 𝑞(w|𝜽 ∗),

𝑝 (𝑧 |w,D) = 1
𝑁

∑𝑁

𝑖=1
𝑝 (𝑧 |x,w𝑖 ). (5)

The entropy of 𝑝 (𝑧 |w,D) can be considered a measure of the total
predictive uncertainty [2]. For an out-of-distribution (OOD) tap
sample, a Bayesian neural network will likely assign an almost
uniform distribution over all fingers given the higher uncertainty
associated with unseen data. We further encourage this by training
our network on OOD samples that do not belong to tap events
by adding an entropic open-set loss term [14], which enforces the
output distribution to be uniformly distributed.

The entropic open-set loss is defined as

L𝐸 (x) =


− log𝑝 (𝑧𝑓 |x,w) if x is from finger 𝑓 .
− 1

|fingers |
∑

𝑓 ∈ fingers
log𝑝 (𝑧𝑓 |x,w) if x is OOD sample.

To reject tap events during runtime, we apply a threshold Z to
the output of our Bayesian neural network. This discards inputs
that do not have high-enough probabilities assigned to any class as
false-positive detections and stops further processing at this point.

To speed up inference using our Bayesian neural network, we
employ the local reparameterization trick where we sample the
activations instead of each weight individually to enable efficient
parallelization [37, 58]. Thus, we can infer the outputs for an en-
semble of predictions for a tap input with a single minibatch.
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Comparison with TapID. While the underlying architecture of our
Bayesian neural network classifier may appear similar to TapID’s
CNN implementation [46], the better calibrated output of our clas-
sifier is a key prerequisite for our text decoder.

TapID’s classifier network was trained with a cross-entropy
loss, which tends to result in overconfident predictions when the
negative log-likelihood loss is extensively minimized on its own.
This leads to a badly calibrated classifier [24], where the output of
the final softmax function assigns all probability to a single finger
and thus only provides information about the most likely class.

For TapID, the classification accuracy was 90% after fine-tuning
on 10 user samples. This accuracy is impractical for text input,
however. For a five-letter word, say, this method would produce a
correct finger sequences in 0.95 = 59% of the time. Such low accu-
racy would require strong error correction from the text decoder
and vastly increase the number of possible matches.

3.3 Probabilistic text entry decoder
From the sequence of estimated probability distributions from our
Bayesian classifier (one for each tap), we aim to predict the corre-
sponding character sequences and thus the typed words. For this,
we propose a probabilistic text entry decoder that determines the
most likely string sequences based on these finger probability dis-
tributions—instead of considering just the most likely finger for
each tap. We accomplish this by weighing the prior probability that
is assigned by a language model for a specific character with the
corresponding finger’s probability predicted by our classifier:

argmax
𝒚𝒍

𝑝 (𝒚𝒍 |𝑿𝒍 ) = argmax
𝒚𝒍

𝑝 (𝒚𝒍 ,𝑿𝒍 )
𝑝 (𝑿𝒍 )

= argmax
𝒚𝒍

𝑝 (𝒚𝒍 ,𝑿𝒍 )

= argmax
𝒚𝒍

𝑝 (𝒙𝒍 |𝒚𝒍 ,𝑿𝒍−1)𝑝 (𝑦𝑙 |𝒚𝒍−1,𝑿𝒍−1)𝑝 (𝒚𝒍−1,𝑿𝒍−1)

= argmax
𝒚𝒍

∏𝑙

𝑖=1
𝑝 (𝒙 𝒊 |𝒚𝒊,𝑿 𝒊−1)𝑝 (𝑦𝑖 |𝒚𝒊−1,𝑿 𝒊−1) .

(6)

In the next step, we apply the conditional independencies fol-
lowing from the hidden Markov model in Figure 2. We make use of
the law of total probabilities to rewrite the equation. 𝑝 (𝑧𝑖,𝑓 |𝑦𝑖 ) is 1
for the finger 𝑧𝑖,𝑓𝑦𝑖 that 𝑦𝑖 is typed with and otherwise 0.

argmax
𝒚𝒍

∏𝑙

𝑖=1
𝑝 (𝑦𝑖 |𝒚𝒊−1)𝑝 (𝒙 𝒊 |𝑦𝑖 )

= argmax
𝒚𝒍

∏𝑙

𝑖=1
𝑝 (𝑦𝑖 |𝒚𝒊−1)

∑
𝑓 ∈ fingers

𝑝 (𝒙 𝒊 |𝑧𝑖,𝑓 )𝑝 (𝑧𝑖,𝑓 |𝑦𝑖 )

= argmax
𝒚𝒍

∏𝑙

𝑖=1
𝑝 (𝑦𝑖 |𝒚𝒊−1)𝑝 (𝒙 𝒊 |𝑧𝑖,𝑓𝑦𝑖 )

= argmax
𝒚𝒍

∏𝑙

𝑖=1
𝑝 (𝑦𝑖 |𝒚𝒊−1)

𝑝 (𝑧𝑖,𝑓𝑦𝑖 |𝒙 𝒊)𝑝 (𝒙 𝒊)
𝑝 (𝑧𝑖,𝑓𝑦𝑖 )

= argmax
𝒚𝒍

∏𝑙

𝑖=1
𝑝 (𝑦𝑖 |𝒚𝒊−1)𝑝 (𝑧𝑖,𝑓𝑦𝑖 |𝒙 𝒊).

(7)

Again, 𝑝 (𝒙 𝒊) does not depend on 𝒚𝒍 . We estimate 𝑝 (𝑧𝑖,𝑓𝑦𝑖 |𝒙 𝒊)
using the output of our Bayesian classifier. In case we train our
classifier on a balanced dataset over the fingers, we can assume
that 𝑝 (𝑧𝑖 ) is uniform over all fingers from the perspective of the
Bayesian neural network. Thus, it does not change with 𝑓𝑦𝑖 and

can be neglected. To approximate 𝑝 (𝑦𝑖 |𝒚𝒊−1), we use an n-gram
character model.

Our method finds the most likely character sequence through
beam search [54] and supports our word discovery with an addi-
tional word-gram model to improve the final set of results. Finally,
we rank all results according to the sum of the log probabilities
from the n-gram character language model, the estimated output
of the Bayesian neural network as well as the word-gram model,
and present them as suggestions to the user.

4 IMPLEMENTATION
We now describe our specific implementation to arrive at a real-
time interactive text entry system. Our system comprises three
components: 1) the hardware prototypes of the sensor bands, 2) the
design, implementation, and training of our Bayesian classifier, and
3) our probabilistic decoder with an n-gram language model.

We implemented our system in Python 3.8 to run on an 8-core
Intel Core i7-9700K CPU at 3.60GHz. The text decoder ran across
multiple cores to parallelize the search, while an NVIDIA GeForce
RTX 2080 GPU processed our Bayesian tap classifier.

4.1 Hardware
For the acquisition of finger and palm tap signals, we developed
a wireless sensor wristband as shown in Figure 4. With our pre-
vious method TapID, we estimated the identity of tapping fingers
from the mechanical vibrations recorded with two accelerometer
sensors placed close to the ulna and radius. For TapType, we ad-
vanced our previous dual-inertial sensor design with two ultra-low
power three-axis accelerometers (BMA456, Bosch Sensortec), which
provide higher resolution (16-bit, ±2G) and higher sampling rates
(1600Hz) for increased precision. As before, the sensors affix to flex
PCB boards that connect to the mainboard as shown in Figure 4.
A system on a chip (DA14695, ARM Cortex M33, Dialog Semicon-
ductor) downloads the data from the accelerometers and streams
it to a backend through Bluetooth Low Energy. A TapType band
is powered through a 3V CR2032 coin cell battery, which plugs
into the holder on top of the board. TapType consumes between
10–15mW, lasting for around 30 hours on a coin cell battery.

For assembly, we cast the electronics in Shore 42 TFC elastic
silicone (TFC Troll factory Two-component Silicone Type 15, Riede,
Germany) to form a flexible wrist strap that firmly and comfortably
attaches to the wearer’s skin. The silicone also helps couple the tap
events to the accelerometers on the flexible straps.

4.2 Recording training data
To gather samples for the learning-based approach in our method,
we constructed an apparatus to capture representative accelerome-
ter signals for typing input. Simultaneously, we recorded ground-
truth touch events to label accelerometer signals with the correct
finger identity. This setup allowed us to train our classifier in a
supervised manner after a collection procedure with participants.

4.2.1 Apparatus. As shown in Figure 5, our data collection appa-
ratus consisted of two TapType bands, a tablet that showed typing
instructions to participants, and a sheet of paper with a QWERTY
layout printed on it. Underneath the sheet, a large touch sensor
collected input from participants.
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Figure 4: TapType’swristband integrates two accelerometers
and a mainboard in a silicone wrist strap (left). The battery-
powered embedded platform (right) streams the signals via
Bluetooth Low Energy to a computer for further processing.

TapType’s IMU streams. Throughout the data collection, partici-
pants wore two TapType wristbands, one on either wrist, which
continuously streamed the data from the two accelerometers to a
PC for logging. The continuous stream of accelerations included
all hand motions including touch and tap events. To eliminate the
chance that wireless connectivity may drop samples, we connected
the wristbands through thin and flexible magnet wires to the PC
for power and reliable serial communication. The tethers ran along
the frame and loosely hung from the crossbar to avoid interference
during hand motion in the air and on the table.

Touch sensor for ground-truth events. For ground-truth touch events,
we use a mutual-capacitance sensor with the dimensions 420mm ×
295mm (Project Zanzibar sensor [68]). We printed a QWERTY key-
board layout on an A3-sized paper and attached it atop of the capac-
itive sensor. The printed keys had background colors corresponding
to ten-finger touch typing on QWERTY keyboards. The keyboard
covered 410mm × 145mm and keys measured 29mm × 29mm.
We protected the touch area with a sheet of transparent plexi-
glas (1.5mm thick) to prevent wear on the printed keyboard sheet
and to solidify our apparatus. The digitizer was a Microchip AT-
MXT2954T2, calibrated to optimally process events through the
plexiglas and paper from the copper sensor [60], and configured to
output events and coordinates at maximum update rate (> 200Hz).

Motion capture for 3D fingertip trajectories. To record the motions
of participants’ fingertips in midair before and after type events, we
additionally mounted four cameras on the frame around the touch
apparatus (NaturalPoint OptiTrack Flex13). Before each recording
session, the experimenter attached 2mm retroreflective markers
to the participant’s fingernails. Because the raw marker positions
do not reveal which fingertip a marker belongs to, we recover this
information by sorting markers across the forward and right axes
and through temporal tracking in the case of a concealed marker.
After the study, we combined the reconstructed fingers with the
events and coordinates reported by the touch digitizer to obtain
records of finger identities, locations, and all IMU streams.

OptiTrack Flex 13

capacitive sensor

TapType wristband

printed
keyboard overlay

Figure 5: For our data collection, several participants typed
sentences on a QWERTY keyboard printed on an A3-sized
paper. We logged finger tip motions using an OptiTrack
alongside the IMU streams from both TapType wristbands.
For ground-truth touch events and locations, we placed a ca-
pacitive touch sensor below the printed keyboard.

4.2.2 Participants. We recruited 10 participants for our data collec-
tion (4 female, ages 22–34, mean=28 years). Participants rated their
language and typing skills on a 7-point Likert scale (1 = “do not
agree”, 7 = “strongly agree”) for the following statements: “I consider
myself a fluent English speaker” (mean=6.4, min=6), “I consider
myself a fast typist.” (mean=5.1, min=4, max=7), and “My typing
style matches the key-finger configuration of this study.” (mean=4.8,
min=2, max=7). Participants rated the first two statements before
the study and gave the third rating afterwards.

We gathered training data with an additional 6 participants (1 fe-
male, ages 24–34, mean=27.5 years) from our research group, which
we solely used to improve our classifier, but did not include it in
any evaluation as test data.

4.2.3 Task & procedure. As shown in Figure 5, participants sat
at a desk and rested their lower arms on the table. Participants’
first task was to type the text shown on the monitor on the sheet
of paper using the respective fingers corresponding to ten-finger
touch typing on QWERTY keyboards. The right thumb activated
the space bar. For each touch, the visual interface acknowledged the
key press with the correct character in a Wizard of Oz manner [80].
Throughout typing, the experimenter strictly ensured the correct
use of fingers with the support of the motion capture software.
When participants had used an incorrect finger for a letter, the
experimenter reset the phrase and the participant typed it again.
In a second task, participants produced additional taps at random
locations on the surface following visual instructions, completing
the capture process for training data.

Overall, our data collection consisted of four blocks and each
block had three phases. In the first phase, participants typed a
set of short phrases on the paper-printed keyboard in front of
them. The phrases consisted of pangrams as well as of sentences
from Wikipedia that had high entropy over the ten fingers. This
procedure collected at least 15 taps from each finger, except for the
left thumb, which was not used for entering text.
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In the second phase of each block, the display showed ten squares,
spatially arranged to match the fingertip positions of an extended
hand. One after the other, one square was highlighted and par-
ticipants tapped anywhere on the acrylic glass surface with the
corresponding finger for a total of 10 trials per finger and 40 trials
for the left thumb. Highlighted fingers randomly varied across trials.
After completing the trials for all fingers, participants tapped the
palm of each hand on the table a total of 40 times.

In the third phase, participants performed mid-air typing and
mid-air movements for another minute with both hands. This al-
lowed us to collect samples that would cause false activations in
TapType’s threshold-based activation algorithm, but that could be
rejected in the learning-based stage of our pipeline.

Between blocks, participants took off the wristbands, swapped
them, and put them on again. Overall, the data collection took
approximately 90 minutes per participant.

Note that participants received no instructions on typing inten-
sity. Because our apparatus reliably detected all touches using the
capacitive sensor (and not the rate-of-change threshold), partici-
pants’ typing events may have been subtle in tapping strength and
thus comparable to typing on a tablet. Therefore, our apparatus
allowed us to capture externally valid touch events and intensities.

4.3 Data processing and candidate detection
Since all data was logged by the same PC, frames streaming in from
the wristbands, the motion-capture system, and the touch digitizer
were synchronized on the same clock. We first processed the fin-
gertip positions from the motion capture to map finger identities
to touch events. For each touch event, we thus obtained the finger
identity, touch location, and the typed target character.

We used these touch events to label events in the streams of IMU
data. This also allows us to label all other events in the IMU streams
that had no corresponding touch event as spurious input.

4.4 Bayesian tap classification
For the design of our classification network, we started with our
previous VGG-based CNN to process windows of inertial signals for
classification [46]. For TapType, we process windows of 128 samples,
containing accelerations from both sensors and the three axes each.
These windows therefore contain 80ms of input data.

To advance our CNN for Bayesian inference, each layer could be
converted to a Bayesian counterpart. Prior work, however, showed
superior classification performance for networks with only few
Bayesian layers without compromising uncertainty modeling [78].

To compare network architectures, we designed four models.
All models implemented the architecture shown in Figure 3: five
convolutional blocks that each consist of two convolutional layers
with a kernel size of 3 × 3, followed by a max pooling layer. Each
convolutional layer uses batch normalization and a leaky ReLU
activation function. Two linear layers follow the convolutional
blocks and a final softmax activation function shapes a distribution
over the five fingers and the palm of the hand. The models differed
in the placement of the Bayesian layers. We substituted Bayesian
layers for (a) no layer (no-Bayes, e.g., TapID as a baseline [46]),
(b) only the last linear layer (1-Bayes), (c) the first convolutional
layer and the last linear layer (2-Bayes), and (d) all layers (all-Bayes).

We trained the models with Bayesian layers using the objective
function presented in Equation 4. For the non-Bayesian model, we
omit the KL divergence term L𝐾𝐿 in the loss function. All models
produced as output the probability distribution over the five fingers
and the palm of one hand having caused an input event. In case
no output is higher than our rejection threshold Z , the sample is
rejected and treated as false positive detection.

Before feeding the data to the classifiers, we standardize the input
signals along the time dimension of each axis across the training
dataset. Also, we invert the right axes to mirror the signals from
the left wristband across the body’s sagittal plane to make use of
the inherent symmetry between the human hands. We then train a
single classifier on the samples received from both hands.

4.5 Text entry decoder
TapType estimates the probability for a given character sequence
using an n-gram language model.

Training data. To train our language model, we obtained a dataset
of a large number of sentences from Wikipedia, blog posts, news
articles, review platforms, e-mails, research papers and other open-
source datasets from the internet. Similar to previous efforts [67],
we optimized our model for the domain of mobile text entry. We
selected suitable training sentences based on the cross-entropy
difference [47] between a language model trained on a subset of
sentences from a query dataset and an in-domain language model
created by combining two separate language models trained on the
W3C and TREC 2005 dataset excluding spam messages. We only
used sentences without numeric characters. Appendix A further
details the acquisition and processing of the training data.

Languagemodel. Our implementation of the languagemodels builds
on 𝐾𝑒𝑛𝐿𝑀 [27]. For characters, we trained a 12-gram character
language model with Witten-Bell smoothing [71]. The vocabulary
included all lower case characters a–z of the Latin alphabet and
the apostrophe ’. For word sequences, we trained a 4-gram word
language model with modified Kneser-Ney smoothing [6] and a
vocabulary of 100k English words [64].

Decoder. Our probabilistic text entry decoder receives a sequence
of probability distributions over the ten fingers and the palms of the
hands as input and a known key-finger mapping that assigns the
characters of the vocabulary to the fingers excluding the thumbs.
Given that we know the identity of the hand that has caused the
peak and no keys are associated with the thumbs or the palm,
the decoder has to consider the probability and corresponding
characters of only four fingers for each sample.

Our decoder then sums the log-probability of each finger with
the estimated log-probabilities from the character language model
for each character corresponding to the respective finger. To speed
up computation, we make use of a beam search algorithm and
additionally ignore fingers that have a probability of less than 0.1
assigned by the classifier. Because users commit a selection after
entering a word, we also add the log-probability from the word
language model at the end of an input sequence and only return
suggestions within our vocabulary.



TapType: Ten-finger text entry on everyday surfaces via Bayesian inference CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

By design, our current implementation does not account for
omission and insertion errors. However, due to our probabilistic
approach, our method supports imprecision in classifying fingers.

4.6 Interaction vocabulary
For efficient typing, commands to advance and delete text need
to be included, as well as for completing a sentence (‘submit’) in
addition to typing letters. Because our system is suggestion-based
to disambiguate the redundancy of input combinations and com-
pensate for misspelling, another command is required to browse
through the list of suggestions.

For entering characters, users type with the four fingers of each
hand. Once our Bayesian classifier reports a typing event, TapType
plays a click sound to acknowledge each input and, when using
visual feedback, appends an asterisk to the already typed characters.
Simultaneously, we feed the sequence of input probability distri-
butions for the currently typed word into our text decoder, which
returns a list of suggestions ranked by likelihood.

Our system displays the typed word alongside a list of alternative
suggestions once the decoder finishes the processing of the new
input sequence, replacing the asterisks with the top entry in the
suggestion list. The user can now accept the suggestion by tapping
space (i.e., the right thumb) or cycle through the list of suggestions
with the left thumb. Pressing space at any point accepts the cur-
rently selected suggestion. If the user continues typing with the
fingers, the list of suggestions disappears and the word is again
substituted with a sequence of asterisks.

To delete the current word, the user taps with the palm. Tapping
with the left thumb after deleting a word brings up the list of
suggestions of the previousword, allowing users to continue cycling
through in the cast of an accidental ‘space’. Repeated activations of
‘delete’ continue removing words one by one.

To finish a phrase, the user types space twice, similar to the
implementation of a full stop on touch keyboards.

Probabilistic and deterministic input. For advancing to the next word,
cycling through suggestions, and deleting a word, we chose the
thumbs and left palm, respectively, because they produce a distinct
input signal in TapType that we can reliably classify and thus,
process deterministically. Especially for space, the input gesture
matches many users’ notion of advancing to the next word. For
decoding characters, the uncertainty for input from fingers can
be high, making a certain classification difficult and error-prone.
The output of our Bayesian classifier for these fingers is therefore
handled by the decoder in a probabilistic manner.

Out of vocabulary words. TapType supports a mode for entering
arbitrary words by selecting characters one by one, even if they are
not part of a dictionary. After typing an individual character, the
user can cycle through the list of suggestions with the left thumb
and—instead of hitting ‘space’ to advance to the next word—tap
with their right palm to accept the suggestion but continue typing
the current word. This input process is comparably slow for long
words, but expedient for shorter terms, such as abbreviations.

5 TAP EVALUATION & OPTIMIZATION
In this section, we describe our selection of hyperparameters using
the data we collected, including the rate-of-change score threshold,
the exponential reduction factor, and the back-off period. We then
describe our validation of the four possible classification networks
to determine the best model. Finally, we use the results of this
evaluation to optimize our pipeline for real-time text entry.

5.1 Evaluating rate-of-change
hyperparameters

We processed all touch events in our collected dataset and found
that the exponential reduction factor 𝐷 = 1.6 and a rate-of-change
threshold of 𝑅𝑥 = 10 were optimal to detect as many true events as
possible while keeping the number of false activations low. In any
case, the latter would be rejected by the classifier. In conjunction
with a back-off period of 64 samples (i.e., the minimum distance
between adjacent peaks), our rate-of-change method detected a
touch event in the IMU streams with a recall of 97% within a 50ms
window around a tap event registered by our apparatus.

Filtering the dataset with these parameters resulted in 28,116
labeled taps across 16 participants for training. Processing our
collection of mid-air typing and other motions amounted to another
43,529 tap candidates following the rate-of-change score. The latter
candidates represent the OOD samples that we used to train our
classifier to reject events.

The hyperparameters for our rate-of-change method face sev-
eral trade-offs. Passing more events increases computation load
on our network and may risk incurring latency at some point. We
also noticed that samples with lower scores result in a weaker fin-
ger classification performance downstream. Because the capacitive
touch sensor detected input events in the study, participants some-
times tapped with little to no force, which still entered the phrase
correctly. These cases, however, lead to minuscule vibrations de-
tected by the sensors, indistinguishable from noise, and without
distinctive information about finger identities.

We experimentally determined the minimum rate-of-change
score for soft and slow taps at a threshold of 17, which was more
than sufficient to pick up taps with reasonable expression. We used
this score in all following experiments. Using a threshold of 17, 87%
of all recorded touch events are considered. At the same time, we
reduce the amount of false-positive detections by 36%.

5.2 Classifier validation
Using the data from the external participants as the test set, we
validated the four networks across blocks, across participants, and
across participants with per-person fine-tuning. For cross-block
evaluation, we performed four rounds of evaluation per participant,
each training on three blocks and validating on the remaining block.
For cross-participant evaluation, we trained the networks on data
from 15 participants and validated on the remaining participant
for 10 rounds. For cross-participant with fine-tuning, we took the
network trained on 𝑛−1 participants, randomly selected 30 taps for
each finger from the first block of the remaining participant, and
trained with them for another 2000 iterations. We then evaluated
the resulting model on the samples of the other three blocks.
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Cross-block evaluation Cross-participant evaluation Cross-participant with 30-tap fine-tuning

Methods T I M R P PA FP AVG(±σ) ECE NLL T I M R P PA FP AVG(±σ) ECE NLL T I M R P PA FP AVG(±σ) ECE NLL

no-Bayes 0.97 0.90 0.84 0.86 0.93 0.95 0.99 0.92(±0.03) 0.06 0.51 0.94 0.81 0.70 0.71 0.86 0.92 0.97 0.84(±0.08) 0.12 1.21 0.96 0.82 0.74 0.76 0.89 0.93 0.97 0.87(±0.07) 0.11 1.01

1-Bayes 0.98 0.90 0.83 0.87 0.93 0.95 0.98 0.92(±0.03) 0.10 0.35 0.94 0.80 0.64 0.70 0.84 0.93 0.97 0.83(±0.08) 0.07 0.58 0.97 0.84 0.74 0.77 0.89 0.92 0.97 0.87(±0.07) 0.07 0.50

2-Bayes 0.98 0.93 0.88 0.89 0.94 0.96 0.99 0.94(±0.02) 0.03 0.19 0.95 0.85 0.71 0.72 0.87 0.93 0.98 0.86(±0.08) 0.04 0.39 0.98 0.87 0.79 0.77 0.84 0.91 0.97 0.88(±0.07) 0.04 0.41

all-Bayes 0.97 0.91 0.85 0.89 0.94 0.93 0.98 0.93(±0.02) 0.02 0.23 0.93 0.81 0.69 0.72 0.88 0.92 0.97 0.85(±0.02) 0.02 0.23 0.94 0.83 0.72 0.76 0.89 0.92 0.97 0.86(±0.02) 0.02 0.23

F₁ scores for thumb (T), index (I), middle (M), ring (R), pinky (P), palm (PA) & false positive (FP) samples — mean & standard deviation (σ) of macro F₁ scores (AVG)

ECE - expected calibration error NLL - negative log likelihood

Figure 6: We compared our proposed Bayesian networks with our previous classifier as a baseline (TapID [46], labeled ‘no-
Bayes’) on the 𝐹1 scores, ECE and NLL for cross-session (within-person), cross-person, and cross-person with 30-tap refine-
ment evaluations. We evaluated three network designs: (a) 1-Bayes (replacing the last linear layer with a Bayesian linear
layer), (b) 2-Bayes (replacing the first convolutional layer and last linear layer with Bayesian layers), (c) all-Bayes (replacing
all convolutional and linear layers with Bayesian layers).

Implementation. We implemented all four networks using PyTorch
and trained them for 30 epochs with a batch size of 64 using the
Adam optimizer [36]. For the Bayesianmodels, we used an ensemble
size of 10 and 128 during training and inference, respectively. We
also balanced the dataset using undersampling. The OOD-threshold
Z was set to 0.3 to optimize the rejection accuracy for all four models.
For the isotropic Gaussian prior distribution we use 𝜎𝑝 = 0.1.

Results. Table 6 shows the classification results for the six classes
thumb, index finger, middle finger, ring finger, pinky finger, and
palm. All four networks achieved similar performance in accuracy.

However, accuracy does not capture the confidence a model
assigns to a prediction—yet these confidences are a key enabler for
our probabilistic text decoder. To evaluate the correctness of our
classifier to predict the true likelihood of the observed signal to be
due to a given finger, we determined the negative log likelihood
(NLL) of our model on the test set, which is a lower bound for
the evidence [26], as well as the expected calibration error (ECE)
with 15 bins, which is a commonly used calibration metric [24, 48].
no-Bayes now performed significantly worse than the Bayesian
networks on these metrics. While 2-Bayes was comparatively well
calibrated and achieved the highest accuracy, its ECE and NLL were
slightly worse than the values for the all-Bayes model.

As we are ultimately interested in obtaining the model that most
accurately decodes the user input in combination with a trained lan-
guage model, we also evaluated each model in an offline text entry
evaluation in combination with the rest of the decoder pipeline.

5.3 Offline text evaluation for optimization
To add our text decoder as part of the offline evaluation of our
classifier, we simulated text entry on 50 sentences (280 words) from
the MacKenzie’s phrase set [44]. This evaluation also allowed us to
systematically optimize the hyperparameters of our system. Using
another cross-participant evaluation (15 training, 1 validation, 10
rounds), we started each round with the models trained on the 15
other participants. For each letter of the phrase set, we randomly
sampled taps from the corresponding key and respective finger in
the validation participant’s data split, used them as input into the
four trained classifiers, which each converted the IMU samples into
probability distributions. In four separate runs, the decoder then
processed these outputs to produce a list of word suggestions. We
compared model performances through the positions at which the
decoder returned the target word.

Results. Figure 7 shows the results of our text entry simulation
for the four different architectures. No-Bayes (i.e., the VGG-like
network without any Bayesian layers) performed worst, whereas
among the Bayesian architectures, 2-Bayes (i.e., the network with a
Bayesian input and output layer) performed best.

No-Bayes decoded around 60% of all words within the top 10 sug-
gestions. As surmised in Section 3.2, due to the overconfident class
predictions, the text entry decoder only considered the characters
corresponding to one finger. This prevented the right word to be
proposed as a potential alternative in case of a classification error.

With regard to the performances of the Bayesian neural net-
works, explaining the differences is challenging. They all benefit
from the improved calibration, with 2-Bayes achieving slightly bet-
ter results than 1-Bayes and all-Bayes.

Notably, 2-Bayes performs inference about 4× faster than all-
Bayes (fully Bayesian model). 2-Bayes has 2.1 million weight param-
eters, which is only 0.3% more than the deterministic no-Bayes.

After fine-tuning, 2-Bayes in conjunction with our text decoder
produced the target word in 9 out of 10 suggestions in the top
10 suggestions. In comparison, a ground-truth classifier for finger
identities with 100% confidence would have proposed 98.9% of all
words within the top 10 suggestions.

6 ONLINE TEXT-ENTRY EVALUATION
We conducted an online text entry experiment in which participants
entered a set of sentences using TapType. The purpose of this
experiment was to determine TapType’s efficiency for text entry
with touch-typing participants in an end-to-end setting.

6.1 Study design
Apparatus. For this evaluation, we kept the apparatus to a minimum
to evaluate just our specific implementation. Participants wore a
TapType band on either wrist and sat at a table in front of a monitor.
Similar to our data collection, both bands connected to a backend
PC through thin magnet wires to remove the impact of potential
BLE-based latency, transmission droppage, or power issues. We
reused the frame shown in Figure 5 to suspend the magnet wires
in this study, but we removed all other instrumentation.

For touch detection during the study, we used the hyperparame-
ters established in the previous section. No capacitive touch sensor
aided touch recognition in this study, nor did we include other
types of monitoring to obtain ground truth. TapType operated with
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Figure 7: Simulation results of our text entry system by combining different finger classifiers. For each character, we randomly
selected a sample of corresponding IMU signals from our dataset and fed them into the finger classifier. We then passed the
predicted distribution of finger probabilities into our language model to generate a suggestion list. We counted the number
of times the target word occurred in the top 1, 2, 3, 4, 5, 10, and 20 spots, and calculated the respective recall. The chart shows
the average recall across participants. Error bars indicate the standard error across participants.

2-Bayes to classify all touch events and perform rejection, trained
on the samples from our data collection.

Task. During each trial, participants’ task was to enter a sentence
through touch typing on the table surface. The screen in front
of participants showed the sentence. When they produced input
through taps, TapType behaved as described above, processing the
full set of input commands. Our study application displayed a max-
imum of ten suggestions, highlighting the first inline as described
above. Participants received no visual support on keyboard layouts
or finger mapping during the study.

Procedure. The evaluation comprised eight phases: fine-tuning, key-
board baseline, practice with TapType, four blocks of validation,
and a final block of validation without fine-tuning. Each part con-
tained randomly selected sentences from MacKenzie and Soukor-
eff’s phrase set [44], ensuring that no sentence appeared twice in
the study or had been used in the previous offline evaluation. We
used the same set of phrases for all participants but randomized
their order across participants. The 100k English word vocabulary
for our decoder included all words of the phrase set. Thus, we added
5 randomly selected sentences from the TWITTEROOV set [63],
which contained out-of-vocabulary (OOV) words. Before the study,
participants completed a questionnaire on demographics and on
their English and typing skills. The experimenter also measured
participants’ wrist circumferences and right-hand lengths.

Next, participants received training for using TapType. They put
on both bands and tapped on the table surface with 30 repetitions
with each of their fingers one at a time. This allowed us to fine-tune
our 2-Bayes classifier. While fine-tuning the network, participants
typed 10 phrases on a physical keyboard with the instruction to
be as fast and accurate as possible. Once the network finished fine-
tuning, we deployed the updated weights to our TapType backend.
Participants then practiced typing with TapType with up to 15
phrases, including the use of gestures for space, delete, and cycle
suggestions. Two of these phrases were randomly picked from
TWITTEROOV to practice entering OOV words.

After training, the experimenter started the evaluation. Across
three blocks, participants entered ten sentences per block from

MacKenzie’s phrase set. A fourth block with five sentences con-
tained one OOV word per sentence. Between blocks, participants
took 5-minute breaks. In the eighth and final phase, the experi-
menter switched the classifier to the 2-Bayes network without fine-
tuning to assess TapType’s performance without person-specific
calibration. In this block, participants entered another 10 sentences
from MacKenzie’s phrase set.

Participants. We recruited 10 participants (2 female, ages 22–40,
mean=28.7), accepting only participants who self-described as touch
typists. Wrist circumferences were 150–200mm (mean=176mm,
SD=15mm), hands were 170–205mm (mean=191mm, SD=9mm).
Participants received a small gratuity for their time. In addition, we
awarded a remote-controlled quadcopter to the fastest participant
with a character error rate below 5% as an incentive.

On a 7-point Likert scale, all participants rated themselves 6
or higher for “I am following a system where I consistently hit a
specific key with the same finger while typing” (mean=6.6), 5 and
higher for “I consider myself a fluent English speaker” (mean=6.3),
4 and higher for “I consider myself a fast typist” (mean=5.4), and
5 and higher for “I consider myself a touch typist” (mean=6.2).
Before participants judged the latter statement, the experimenter
clarified the definition of touch typist and showed the standard
10-finger-system for a QWERTY keyboard.

6.2 Results
Quantitative performance. Our main metric to assess performance
is text entry rate (words per minute, WPM) and accuracy (character
error rate, CER) [43]. We calculated WPM from the time difference
between the first tap of a phrase and the selection of the final word
for TapType and between the first and last entered character for the
physical keyboard. We calculated CER as the Levenshtein distance
between predicted and reference text, divided by the length of the
reference string [67].

On the physical keyboard, participants entered sentences with a
mean speed of 74.5WPM (min=45.5, max=103.6, SE=6.6) and a CER
of 0.4% (min=0.0, max=1.7, SE=0.2).

Using TapType in the three evaluation blocks with the fine-tuned
classifier, participants’ mean speed in Block 1 was 10.6–25.9WPM
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Figure 8: Results for our online text entry study with 10 par-
ticipants. On average, participants entered text at a speed
of at least 15WPM during the first three blocks (1, 2, 3),
reaching 19WPM in the third block with a fine-tuned classi-
fier. Text entry rates for phrases with OOV -words averaged
9WPM.Without fine-tuning (w/o finet.), participants’ speed
was around 15WPM with a median CER of 0.0%.

(mean=17.1, SE=1.5), 12.5–27.6WPM in Block 2 (mean=18.0, SE=1.5),
and 14.3–26.3WPM in Block 3 (mean=19.2, SE=1.2). Participants
were careful not to make mistakes and quickly corrected errors,
resulting in a mean CER of 0.5% in Block 1 (SE=0.2%), 0.3% in
Block 2 (SE=0.2%), and 0.6% in Block 3 (SE=0.3%). We ran a one-
way repeated-measures ANOVA with Bonferroni and Greenhouse-
Geisser correction to investigate differences in results. We could
not find a significant main effect of Block on entry rate (F(1.17,
10.5)=2.57, p=0.136) or on CER (F(1.44, 12.9)=0.731, p=0.457). For
sentences with OOV words in the fourth evaluation block, where
participants individually entered characters by cycling through
single letters, mean entry speed dropped to 9.0WPM (min=3.9,
max=15.9, SE=1.1) at a CER of 0.4% (SE=0.2%). Using our 2-Bayes
classifier without fine-tuning in the final block, participants reached
an average speed of 15.4WPM (min=10.1, max=22.9, SE=1.4) and a
mean CER of 0.1% (SE=0.1%).

Participants picked the correct target word in at least 9 out of
10 cases when making a selection. For the first three blocks with
a fine-tuned 2-Bayes, the target word was the top suggestion in
over 90% of cases and within the top two suggestions in over 98%
of cases. For 2-Bayes without fine-tuning, prediction uncertainty
was higher, which is why the recall of the target word within the
top 1 suggestions was only 86%. However, recall within the top 2
suggestions was over 96% and over 98% within the top 3.

6.2.1 Qualitative feedback. Participants’ general feedback on the
use of TapType was positive, expressing support for the idea of
tap typing. Several participants with a technical background said
that they were a bit surprised that the system worked reliably and
some asked whether hidden camera tracking was involved. Other
participants instead expressed ideas for use cases, such as ad-hoc
typing in a meeting. Several participants also commented that it
took them time to trust TapType to handle the input, comparing
the experience to their experiences with word-gesture keyboards.

6.3 Discussion
The results of our online evaluation showed that TapType per-
formed well for quick and reliable text entry. While TapType’s
entry rates did not approach physical keyboards, participants’ av-
erage speed of 19WPM confirmed our assumption that previously
acquired touch typing skills transfer to tap typing on a table.

The live conditions of the evaluation also showed that our model
generalized to unseen participants without fine-tuning with the
results of the final block. The lack of fine-tuning accounted for a
drop to 15WPM (22% worse) in participants’ average speed.

It is worth highlighting that performance considerably varied
across participants; one participant typed with over 25WPM across
all three blocks, reaching rates of up to 44WPM on individual
phrases. This indicates that our training session may not have
allowed all participants to reach the system limit. In addition, our
impressions observing participants matched their comments on
trust in the system and we expect to see an increase in participants’
entry confidence and thus speed once they familiarized themselves
more with TapType. We direct the reader to the study footage in
our video figure that shows the fastest study participant, who typed
confidently throughout all blocks.

Based on our observations, we interpret the low error rate as par-
ticipants’ intention to make as few mistakes as possible, which led
them to correct all erroneous predictions. This, of course, slowed
down the overall text entry rate, but it also demonstrated that Tap-
Type generally allowed participants to enter the text they intended.

Comparison to related approaches. TapType’s average entry rate is
50% higher than the speed reported for PinchType [16], which also
relies on ambiguous ten-finger text entry. TapType’s entry rate is
35% higher than QwertyRing’s 14WPM [23], which participants
achieved typing on flat surfaces using IMU ring sensors on the first
day. Using ATK and a displayed keyboard, participants achieved
a speed of 29.2WPM after four blocks [77], albeit on a 10k-word
vocabulary and using a LeapMotion camera for input.

7 SCENARIOS POWERED BY TAPTYPE
We show three scenarios where TapType could facilitate eyes-free
and ad-hoc text entry. Figure 1 previews our demonstration apps.

7.1 Full-size keyboards for smartphones
In the first scenario, TapType complements text entry on smart-
phones in everyday situations (Figure 1a). The user simply places
the phone down and types on the table surface next to it, thereby
implicitly increasing the input area for the smartphone. This off-
screen typing allows the smartphone to hide the keyboard, present-
ing more screen real-estate for the running app. The same benefits
hold for tablet interaction, where users can enter text using TapType
in front of the angled device (Figure 1b).

We implemented this scenario in React as a web app that commu-
nicates with our text entry backend using WebSockets. The phone
app renders the same feedback as our desktop app, asterisks for
words in progress and suggestions laid out above the text field.
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7.2 Audio-only feedback for typing on the go
Many existing systems implement text entry under visual feed-
back. With TapType, we additionally support an audio-only mode
that may be particularly beneficial in mobile and ad-hoc settings
(Figure 1c). Here, TapType plays clicks for taps and reads out sugges-
tions as they appear. When cycling through suggestions, TapType
reads them out loud and, once the user has selected one, TapType
reads out the entire phrase. Similarly, when the user deletes a word,
TapType plays a delete sound and then reads out the entire phrase
to render the system state to the user. For asynchronous audio
playback, we use the sounddevice library for Python with playback
speed set to 1.5×. Playing a new word stops the previous playback.

7.3 Text entry in situated Mixed Reality
Our final scenario is the use of TapType in the context of Mixed
Reality, here a situated Virtual Reality scenario, where efficient text
entry is an important area of research (Figure 1d). We continue
to take advantage of users’ prior experience in touch typing and
thus their mental model of text input, enabling a keyboard-free text
entry interface in VR. For guidance, our app can selectively display
groups of letters above the user’s fingers as an input aid.

TapType’s use in spatial user interfaces is not limited to Virtual
Reality, but it could equally well work in Augmented Reality sce-
narios. Especially productivity scenarios such as office spaces and
collaborative tasks could benefit from TapType for opportunistic
and ad-hoc text entry on passive surfaces such as tables.

We implemented the VR scenario using Unity and combined
TapType’s events and classifications with the tracking information
of the user’s hands as provided by the Oculus Quest 2. Our app
renders the user’s hands according to the tracker, but triggers input
events and key presses based on TapType’s pipeline.

We see a particular opportunity for TapType to complement
input detection of current AR and VR headsets, as TapType detects
touch and text input outside the headset’s field of view. This enables
users of immersive platforms to indirectly interact, producing touch
input in front of them while looking and focusing their attention
somewhere else in the 3D graphical user interface.

8 LIMITATIONS AND FUTUREWORK
TapType’s results are promising and indicate that our method is
worth exploring further. In its current implementation, our system
has a couple of limitations before it can serve our use-cases in a
standalone manner for a wider audience.

Mobility. TapType currently relies on neural network inferences for
touch classification. Achieving this in real-time currently requires
a high-end CPU or a GPU. While we have not focused our efforts
on this so far and used a nearby Razer Blade laptop to power all our
mobile scenarios, we expect that our method can be implemented
on standalone devices, either using emerging neural processing
engines or by engineering dedicated model-size reduced classifiers.

Wireless transmission latency. We observed a considerable differ-
ence in the transmission latency when the wristbands were con-
nected to the PC with wires compared to wireless BLE transmission.
In our tethered setup, we measured a latency of 59ms from the
moment of physical contact between finger and surface and the

registration of an event by the tap detection algorithm which is
similar to the latency observed in our previous project TapID. In
BLE, the latency was 129ms over a 1m distance. Latency further
increased with growing distances between wristband and receiver.

For processing, our 2-Bayes classifier incurs an inference latency
of 6.5ms for a single tap event. Therefore, after producing an input
event, users receive visual or auditory feedback within 65ms in a
tethered setup, but only within 135ms using a wireless connection.
This makes our current implementation feel much more responsive
in tethered mode, as tethered latency is smaller than the mean
touch duration of ∼80ms during typing [34]. Before the user is
provided with a list of suggestions, the decoder takes around 250ms
on average to process the classifier’s output sequence for a single
word. In the future, we plan on improving the responsiveness of
TapType using an improved hardware and antenna design as well
as by moving some of our processing on-board.

Input ambiguity. TapType’s classifier determines the identity of the
finger or palm, but it does not disambiguate between characters that
are typed with the same finger. This increases the uncertainty in
our method and the computational overhead, which makes entering
OOV words slow and difficult. Future improvements of our method
could attempt to recover more granular key selections. In addition
to the finger, directly recovering the row or even key would benefit
input classification.

TapType is for touch typing. Related to input ambiguity, TapType
relies on participants’ ability to perform 10-finger typing. However,
prior research showed that the key-finger mappings vary even
among touch typists [17]. Our method already supports changes of
the pre-defined mapping through simple reconfiguration without
needing to retrain any models. This makes it suitable for any 10-
finger typist that consistently hits a given key with the same finger.

The formulation in Equation (7) naturally extends to a proba-
bilistic key-finger mapping where the probability mass of 𝑝 (𝑧𝑖,𝑓 |𝑦𝑖 )
is spread across fingers. This would make the adaptation of our
system easier for less-practiced users who do not follow a consis-
tent typing strategy. However, the looser prior assumptions would
increase the uncertainty of our prediction. This would then increase
latency due to a larger search space and likely decrease the accuracy
of our system because of the added ambiguity in plausible solutions.
Given that the key-finger distribution varies across users, we see
an opportunity in exploring the use of online learning algorithms
for TapType. These could refine the prior assumptions on a user’s
typing technique during operation, which would be an interesting
direction for future work to improve the efficiency and usability of
our method and add a personalization component without overhead
on the user’s part.

Classification performance. While our 2-Bayes classifier produced
reliable input into our text decoder, it still performed worse than
its fine-tuned counterpart. To improve our recognition, we plan
on expanding our data collection and consider including online
learning to constantly improve the classifier when the user selects a
suggestion, as is common on smartphone keyboards. We also expect
further improvements with additional correction capabilities of the
decoder including insertions, deletions, and substitutions.
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9 CONCLUSION
We proposed a novel method to decode text from accelerometer
signals sensed at the user’s wrist using a wearable device. The key
enabler of our method is a text entry decoder that takes the proba-
bilistic output of a Bayesian neural network tap classifier as input
and fuses it with the likelihood estimate from an n-gram language
model. We presented TapType, a wireless and wearable smartband
text entry device that implements our method and affords text in-
put on rigid surfaces on the go. TapType leverages users’ ability to
transfer their prior experience from 10-finger touch typing on phys-
ical keyboards to tap typing on surfaces. In our online evaluation,
participants entered text at an average rate of 19WPM, while the
subset of more experienced typists achieved an average rate of more
than 25WPM. We demonstrated TapType potential in applications
around mobile text entry to complement smartphones and tablets
as well as for ad-hoc situations using audio feedback only. We see
particular promise for TapType to support interaction in mixed
reality, particularly situated virtual reality, as our approach sup-
ports users in entering text outside visual control. Collectively, we
believe that TapType is a promising enabler for a future generation
of wearable and mixed reality systems to type anywhere.
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A LANGUAGE MODEL TRAINING DATA
The training corpus we used for the n-gram language model com-
prised sentences from the following datasets:

• 20 Newsgroups: http://qwone.com/~jason/20Newsgroups/
• Amazon (small) [50]: https://nijianmo.github.io/amazon/index.html
• Arxiv: https://arxiv.org/help/bulk_data_s3
• Blog Corpus [1]: https://lingcog.blogspot.com/p/datasets.html
• Enron Email: https://www.cs.cmu.edu/~./enron/
• LargeMovieReview [42]: http://ai.stanford.edu/~amaas/data/sentiment/
• Reuters-21578, Distribution 1.0: https://archive.ics.uci.edu/ml/
datasets/Reuters-21578+Text+Categorization+Collection

• Sentiment140: http://help.sentiment140.com/for-students
• TREC2005 Spam (ham): https://trec.nist.gov/data/spam.html
• W3C [3, 10]: https://www.cs.cornell.edu/~arb/data/pvc-email-W3C/
• Wikipedia: https://www.tensorflow.org/datasets/catalog/wikipedia
• Yelp: https://www.yelp.com/dataset

We removed sentences with numeric characters and any punc-
tuation except for the apostrophe ’.

Using cross-entropy difference selection [47], we optimized our
training corpus for the domain of mobile text entry. We randomly
picked 10% of the sentences from the in-domain W3C and TREC
2005 datasets as hold-out data. As vocabulary for the language

models, we took all words that appeared at least twice in the re-
maining in-domain corpus, which consisted of more than 950,000
sentences in total. Following Moore and Lewis’ approach [47], we
trained a separate 4-gram language model using back-off absolute
discounting [49] (implemented with the SRI Language Modeling
Toolkit [59] and a discount of 0.7 for all n-gram lengths) on each
of the two in-domain datasets. The models were combined as a
mixture model using linear interpolation where the interpolation
weights were optimized on the held-out data.

For each non-domain-specific dataset, we trained a language
model on a similar number of randomly picked sentences as for
the in-domain language models. We then scored each sentence ac-
cording to the difference in cross-entropy between the in-domain
language model and the model that had trained on the selected
sentences from the same dataset. We trained 4-gram language mod-
els on nine different subsets for each dataset. Each subset only
contained sentences with a cross-entropy score higher than a re-
spective threshold that was selected to logarithmically increase the
number of samples across subsets. For the final training corpus, we
only selected the sentences for a given dataset from the subset that
achieved the lowest perplexity on the held-out in-domain dataset.
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