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Figure 1. The EgoPressure dataset. We introduce a novel egocentric pressure dataset with hand poses. We label hand poses using our
proposed optimization method across all static camera views (Cameras 1–7). The annotated hand mesh aligns well with the egocentric
camera’s view, indicating the high fidelity of our annotations. We project the pressure intensity and annotated hand mesh (Fig. i) to all
camera views (Fig. a to h), and further provide the pressure applied over the hand as a UV texture map (Fig. j and k).

Abstract

Touch contact and pressure are essential for understanding
how humans interact with objects and offer insights that ben-
efit applications in mixed reality and robotics. Estimating
these interactions from an egocentric camera perspective
is challenging, largely due to the lack of comprehensive
datasets that provide both hand poses and pressure annota-
tions. In this paper, we present EgoPressure, an egocentric
dataset that is annotated with high-resolution pressure in-
tensities at contact points and precise hand pose meshes,
obtained via our multi-view, sequence-based optimization
method. We introduce baseline models for estimating ap-
plied pressure on external surfaces from RGB images, both
with and without hand pose information, as well as a joint
model for predicting hand pose and the pressure distribution
across the hand mesh. Our experiments show that pressure
and hand pose complement each other in understanding
hand-object interactions.

1. Introduction

Understanding touch during hand-object interaction, espe-
cially from an egocentric perspective, is key for augmented
reality (AR) [31, 72], virtual reality (VR) [20, 66], and

* Equal contribution.

robotic manipulation [9, 10, 48]. In AR/VR environments,
touch contact and pressure information allow for more pre-
cise control and feedback [8]. For example, a virtual piano
could vary its sound with key pressure, a feature lacking in
current AR/VR systems [50]. Pressure sensing is also crucial
for robots to replicate human grasping, where precise force
estimation remains a challenge [9, 10, 39].

Previous approaches have used gloves [46, 47] and robots
with tactile sensors [39, 80] to capture pressure measure-
ments during object manipulation. However, this instrumen-
tation interferes with natural touch by obstructing tactile
feedback. In contrast, vision-based estimation methods re-
quire no instrumentation of the hands, and cameras are al-
ready integrated into devices like smart glasses and mixed
reality headsets [21, 22]. Despite this potential, advance-
ments in state-of-the-art models have been limited by the
lack of relevant datasets with contact pressure annotations.
A notable exception is the PressureVision dataset [19] that
comprises RGB footage from four static cameras of hands in-
teracting with a pressure-sensitive surface and corresponding
projected pressure images.

In this paper, we introduce a novel dataset, EgoPressure,
that extends these prior efforts [19, 20] and captures hand-
surface interactions from an egocentric perspective, com-
plete with pressure maps projected onto the articulated hand
mesh in 3-space. Our capture platform combines a Sensel
Morph touchpad with one head-mounted and seven static
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cameras, all recording RGB-D data at 30 Hz (Figure 1). The
dataset includes 5 hours of footage from 21 participants, each
performing 64 interaction sequences with an average length
of 420 frames—making it the first bare-handed egocentric
dataset with pressure and hand mesh annotations.

We further provide baseline models to demonstrate the
potential of our dataset and establish a benchmark for future
research. First, we set PressureVisionNet [19] as a baseline
on our egocentric dataset and compare it to adapted models
that incorporate hand pose as additional input. The model
using hand poses estimated from the RGB images via the
HaMeR [54] estimator outperforms PressureVisionNet by
more than 5% in volumetric IoU error, with improvements of
over 7% when using ground-truth hand poses. Additionally,
we introduce the first model to jointly estimate hand pose,
hand mesh, and pressure both over the mesh and on the
surface from an egocentric RGB camera, thereby localizing
contact and pressure in 3D space.

We summarize our key contributions as follows:
1. EgoPressure is the first egocentric hand-surface interac-

tion dataset with projection-based pressure annotations
together with 3D hand meshes.

2. We establish two novel benchmarks: (1) estimating con-
tact pressure from egocentric RGB images with and with-
out hand pose information, and (2) jointly predicting 3D
hand poses and applied pressure, including the localiza-
tion of pressure on a user’s hand mesh.

EgoPressure thus offers new opportunities for future work
to address the unique challenges of egocentric camera views
and to precisely localize pressure on a user’s hand.

2. Related Work
Vision-based hand-object pose estimation Over the past
decade, significant progress has been made in hand tracking
due to advancements in deep learning techniques [26, 53, 54]
and the collection of relevant datasets [52, 76, 79]. While
egocentric hand tracking for gesture recognition and direct
input has advanced to the point of integration into modern
commercial devices such as AR and VR headsets [27, 28],
understanding hand interactions with external objects
remains an active area of research [15, 16, 22, 38, 44].
Datasets gathered to aid machine understanding of such
hand-object interactions rely on additional instrumentation
of the users’ hands [16], motion capture systems with
hand-attached markers [15, 68], or multi-view camera
rigs [5, 25, 38, 75, 77] to capture accurate ground-truth
poses of users’ hands under the higher degree of occlusion
caused by the object.
Hand-object contact estimation In addition to object-
relative hand pose, prior work has aimed to estimate contact
points between the users’ hands and external objects [15, 68].
Research has shown that when used as input proxies, real-
world physical objects improve input control and provide

haptic feedback [8]. For interactive research purposes,
external tracking systems [8, 58] and wearable sensors
such as acoustic sensors [62] and inertial measurement
units were used to estimate contact [17, 23, 50, 63, 64, 69].
Additionally, vision-based techniques have been developed
that use fiducial markers [40], active illumination for
shadow creation [42, 72], vibration detection [65], or depth
sensing [14, 24, 73, 74]. More recent work estimates touch
using passive cameras without additional instrumentation
on the user’s hand or surface, enabling deployment on
commercial mixed reality headsets [59, 66]. More detailed
contact maps are inferred based on the intersection of
tracked hand and object meshes [15, 18, 38, 56, 68, 77],
requiring sub-millimeter accuracy—a challenging task for
complex gestures due to soft tissue dynamics. To address
this, Brahmbhatt et al. [3] used thermal imaging to obtain
accurate contact maps. Additionally, prior efforts have
utilized simulations to obtain more granular labels about
contacting tissue [11, 29, 78].

Hand pressure estimation Moving beyond the mere detec-
tion of contact, prior work has estimated the pressure forces
applied during hand interactions, which is crucial for robotic
grasping tasks [9, 48] and provides an additional control
dimension for input [57]. To estimate pressure from monoc-
ular images, visual cues such as fingernail alterations [6, 49]
or surface deformations [32, 51] during press events have
been used. Changes in object trajectory and interaction
forces [13, 41, 55] also offer insights but are ineffective
with static objects like tables and walls. Accurate pressure
labels for training usually require instrumenting the user’s
hands with gloves [4, 43, 67] or the surface with force sen-
sors [19, 55, 61], ideally flexible or conforming to various
shapes [2, 36, 46]. However, this alters the visual appear-
ance and tactile features of the hands and surface, affecting
interaction and limiting generalization to bare hands and
uninstrumented surfaces. Grady et al. [19, 20] collected
two datasets with ground-truth pressure maps using a Sensel
Morph [33] pressure sensor to train a neural network for
estimating contact regions on surfaces from single RGB
images. However, their method relies solely on exocentric
static cameras that clearly capture the fingertips.

With EgoPressure, we provide the first dataset containing
egocentric and multi-view RGB-D images of a bare hand
interacting with a surface, along with synchronized pressure
data, hand poses, and meshes (see Table 1).

3. Marker-less Annotation Method
To capture accurate hand poses and meshes without markers,
we developed a multi-camera hand pose annotation method
using the MANO hand model [60], differentiable render-
ing and multi-objective optimization. Figure 2 shows an
overview of our method, which relies on C static cameras



Dataset frames participants hand pose hand mesh markerless real egocentric multiview RGB depth contact pressure
surface hand

EgoPressure (ours) 4.3M 21 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Pressure sensor ✓ ✓
ContactLabelDB [20] 2.9M 51 ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ Pressure sensor ✓ ✗
PressureVisionDB [19] 3.0M 36 ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ Pressure sensor ✓ ✗
ContactPose [3] 3.0M 50 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ Thermal imprint ✗ ✗
GRAB [68] 1.6M 10 ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ Inferred from Pose ✗ ✗
ARCTIC [15] 2.1M 10 ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ Inferred from Pose ✗ ✗
H2O [38] 571k 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Inferred from Pose ✗ ✗
OakInk [75] 230k 12 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ Inferred from Pose ✗ ✗
OakInk-2 [77] 4.01M 9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ Inferred from Pose ✗ ✗
DexYCB [5] 582k 10 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ Inferred from Pose ✗ ✗
HO-3D [25] 103k 10 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ Inferred from Pose ✗ ✗
TACO [45] 5.2M 14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Inferred from Pose ✗ ✗

Table 1. Comparison between EgoPressure and selected hand-contact datasets. The majority of prior datasets infer contacts based on
hand and object pose. ContactLabelDB and PressureVisionDB also include ground-truth touch pressure but are limited to static cameras and
do not provide accurate hand poses and meshes. Please see Supp. for the full table.

Figure 2. Method overview. The input for our annotation method consists of RGB-D images captured by 7 static Azure Kinect cameras and
the pressure frame from a Sensel Morph touchpad. We leverage Segment-Anything [37] and HaMeR [54] to obtain initial hand poses and
masks. We refine the initial hand pose and shape estimates through differentiable rasterization [7] optimization across all static camera
views. Using an additional virtual orthogonal camera placed below the touchpad, we reproject the captured pressure frame onto the hand
mesh by optimizing the pressure as a texture feature of the corresponding UV map, while ensuring contact between the touchpad and all
contact vertices.

and a pressure-sensitive touchpad. Please see Supp. S2.2 for
a detailed evaluation of our annotation method.

3.1. Automatic hand pose initialization
We use HaMeR [54] to estimate an initial MANO hand
pose θinit and translation tinit for each static camera. Since
HaMeR’s prediction is based on a single RGB image, there
is a scale-translation ambiguity, which we resolve by trian-
gulating the root joints from the 7 static camera views. The
orientation and hand pose are then initialized based on the
output of a single camera view. HaMeR also provides a
bounding box, which we use along with the 2D projected
hand root as input to Segment-Anything (SAM) [37], from
which we obtain an annotated segmentation mask Mgt for
the hand in each static camera image.

3.2. Annotation refinement
Based on the initial hand pose, we obtain refined hand pose
annotations via the following optimization using the input
from the C static cameras. We use the MANO [30, 60]
model for mesh representation with 25 PCA components

and employ the DIB-R [7] differentiable renderer. The an-
notations include the hand pose θ, hand translation t, vertex
displacement Dvert in world coordinates, and the pressure
over the hand mesh in the form of a texture map TP . All
static cameras are pre-calibrated, allowing us to project the
hand mesh into the frame of each static camera i using the
extrinsic parameters [Ri

cam|ticam].

β-calibration For the MANO shape parameters β, we use
separate calibration sequences for each hand of each partici-
pant, during which the participant slowly turns their hand to
be visible from all cameras, with fingers spread. For these
sequences, we also optimize the MANO shape parameters
β with l2 regularization in the previous optimization. The
shape parameters are then reused across all other sequences
for the participant, keeping β fixed during subsequent opti-
mizations.

Following HARP [35], our method consists of two stages:
(1) POSE OPTIMIZATION and (2) SHAPE REFINEMENT.

In the first stage, POSE OPTIMIZATION, we annotate
the hand pose θ and translation t. The hand mesh Θ can
be derived directly from the MANO model [30], expressed



as Θ = MANO(θ, β) + t. We note that certain parts of
the hand, such as fingers, may not be visible from all cam-
era angles—for instance, fingers obscured by the palm in
a curled gesture. To address this, we incorporate the mesh
intersection loss Linsec [34, 70]. The objective function is
then defined as:

Lpose(Θ) = LR(Θ) + Linsec(Θ). (1)

The rendering objective LR and the mesh intersection loss
Linsec will be detailed in Supp. S2.1.

In the SHAPE REFINEMENT stage, the pose θ and trans-
lation t of the hand remain fixed. The optimization process
introduces vertex displacement Dvert. Each vertex is adjusted
by an offset along its normal vector n⃗, which is computed
from the last epoch of the POSE OPTIMIZATION stage, to
minimize the rendering loss LR(Θ∗). Consequently, the re-
fined hand mesh Θ∗ can be expressed as Θ∗ = Θ+n⃗·Dvert.
To ensure a reasonable mesh, the geometry objective LG is
also included in the optimization. Additionally, we introduce
a virtual render

v

R to optimize pressure as a UV map TP and
minimize the distance between the hand mesh Θ∗ and the
contact area on the surface of the touchpad. The objective
function Lshape for this stage is as follows:

Lshape(Θ
∗) = LR(Θ∗) + LG(Θ

∗) + Lv

R
(Θ∗). (2)

The virtual render
v

R, and its objective Lv

R
will be ex-

plained in the next section and the other terms in the geome-
try objective LG will be detailed in Supp. S2.1.2.

3.2.1. Virtual Render for Contact and Pressure
As shown in Figure 2, we also incorporate the captured pres-
sure data in the optimization as a hand mesh texture feature
for our proposed virtual rendering method. For this, we
position a virtual orthogonal camera

v

R under the touchpad,
oriented upwards in the world coordinate system. The render
size matches the resolution of the touchpad, and the camera’s
plane overlaps with the touchpad’s sensing surface. The goal
is for the rendered pressure

v

RP (Θ
∗, TP ) on the hand mesh,

with texture mapping of an optimized pressure UV map TP ,
to align with the input pressure Pgt.

Additionally, we infer the contact area from Pgt using a
simple pressure threshold. Using this contact area as a mask,
we ensure that the masked rendered z-axis depth

v

RD(Θ∗)[z]
aligns with the distance Zv2p from the camera to the touch-
pad, thereby ensuring physical contact.

The objective function Lv

R
(Θ∗) for the virtual render is:

Lv

R
(Θ∗) = MSE(

v

RP (Θ
∗, TP ),Pgt)

+
∣∣∣I(Pgt > 0)⊙ (

v

RD(Θ∗)[z]− Zv2p)
∣∣∣
1
.

(3)

4. EgoPressure Dataset
EgoPressure comprises 4.3M RGB-D frames (2560× 1440
for static camera, 1920× 1080 for egocentric camera) cap-
turing interactions of both left and right hands (see Fig-
ure 7) with a touch and pressure-sensitive planar surface.
The dataset features 21 participants performing 31 distinct
gestures, such as touch, drag, pinch, and press, with each
hand (see Figure 6). It includes a total of 5.0 hours of hand
gesture footage comprised of synchronized RGB-D frames
from seven calibrated static cameras and one head-mounted
camera, along with ground-truth pressure maps from the
pressure-sensitive surface captured at a frame rate of 30 fps.
We used four different surface textures for the data capture
rig, which also includes a green wall to facilitate synthetic
background augmentation. Additionally, we provide high-
fidelity hand pose and mesh data for the hands during in-
teractions based on our proposed annotation method (see
Section 3), as well as the tracked pose of the head-mounted
camera. With EgoPressure, we offer a substantial dataset
for egocentric hand pose and pressure estimation during in-
teractions with rigid surfaces, thereby advancing machine
understanding of human interaction with their surroundings
through the fundamental modality of touch.

(a) Static camera-rig visualization

(b) Overview

(c) Recording

Figure 3. 7 static + 1 egocentric camera rig.

(a) No influence on the depth sensing

(b) IR view (c) Filtered (d) Posed (e) transformed color’s camera pose

Figure 4. Camera pose tracking with IR makers.
4.1. Data capture setup
To capture accurate ground-truth labels for hand pose and
pressure from egocentric views, we constructed a data cap-
ture rig that integrates a pressure-sensitive touchpad (Sensel
Morph [33]) for touch and pressure sensing, along with
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Figure 5. Dataset Statistics (a) t-SNE [71] visualization of hand pose frames θ over our dataset, with color coding for different gestures. All
gestures are listed in Table S5 of the Supp. (b) Ratio of touch frames with contact for each vertex. (c) Maximum pressure over hand vertices
across the dataset. (d) Mean length of performed gestures. (e) Distribution of β values across participants.

Figure 6. Thumbnail of different poses in egocentric views.

seven static and one head-mounted RGB-D camera (Azure
Kinect [1]) to capture RGB and depth images (see Figure 3).
The touchpad (Sensel Morph), measuring 240× 169.5 mm,
is mounted on a tripod head. We use four different texture
overlays (white, green, dark wood, light wood) printed on
paper and placed over the Sensel Morph pad across partici-
pants. The seven static Azure Kinect cameras are attached to
the aluminum frame, and the head-mounted camera is fixed
on a helmet. The frame also holds a computer display and is
surrounded by a green screen.

All cameras and the touchpad are connected to two work-
stations (Intel Core i7-9700K, Nvidia GeForce RTX 3070),
their timestamps are synchronized via a Raspberry Pi CM4
using PTP, which also triggers all Azure Kinect cameras si-
multaneously at a frame rate of 30 fps. We varied the Kinect

(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4

(e) Camera 5 (f) Camera 6 (g) Camera 7 (h)  Egocentric Camera

(i)  Mesh
(j)  Pressure texture (k)  Pressure on hand

(a) Annotation examples for a right hand

(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4

(e) Camera 5 (f) Camera 6 (g) Camera 7 (h)  Egocentric Camera

(i)  Mesh

(j)  Pressure texture (k)  Pressure on hand

(b) Annotation examples for a left hand

Figure 7. Sample data from EgoPressure.
camera exposure (2.5 ms or 10 ms) and overhead lighting
in three conditions across participants: dark (2 tubes active,
2.5 ms), medium (2 tubes, 10 ms), and bright (4 tubes, 10 ms).
We minimize reliance on shadows via diffuse light sources.
Head-mounted camera tracking To obtain accurate poses
of the head-mounted camera, we attach nine active infrared
markers around the Sensel Morph pad in an asymmetric
layout (see Figure 4). These markers, controlled by the
Raspberry Pi CM4, are identifiable in the Azure Kinect’s in-
frared image using simple thresholding (saturating the range
of values of the infrared camera). The markers are turned
on simultaneously, allowing for the computation of the cam-
era pose via Perspective-N-Points and enabling an accurate
evaluation of the temporal synchronization between cameras
and the touchpad (see Supp. S3.5).



4.2. Participants
We recruited 21 participants from our institution (6 female,
15 male, ages 23–32 years, mean age = 26 years), ensur-
ing a broad representation to cover broad hand anatomies.
Participants’ heights ranged from 160–194 cm (mean = 174,
SD = 9), weights from 51–95 kg (mean = 69, SD = 14), and
middle finger lengths from 7.3–9.2 cm (mean = 7.9, SD = 0.5)
(see Figure 5 for distribution of MANO β-values).

4.3. Data acquisition procedure
Participants sat on an adjustable stool in front of the appa-
ratus, wearing a helmet with a mounted camera pointing
towards the Sensel Morph and a black arm sleeve on each
arm up to the wrist. Before starting the data capture, the
experimenter explained the task and the purpose of the study.
They then signed a consent form and provided demographic
information. The participants first performed a calibration
gesture by slowly turning each hand, with fingers spread,
within the camera rig. After calibration, participants con-
ducted 31 different gestures, including touch, press, and drag
gestures of varying strength, with each hand on the Sensel
Morph touchpad (see Supp. S3.1 for a description of ges-
tures). Each gesture was repeated 5 times if it involved a
single touch action (e.g., press index finger) and 3 times
if it involved a sequence of sequential touches (e.g., draw
letters). Before each gesture, participants watched a video
demonstrating how to perform the corresponding gesture
with written instructions on a computer monitor in front of
them. The experimenter guided the participants throughout
the study, which took around 1 hour per participant. Par-
ticipants could take a break after each gesture and received
a chocolate bar as gratitude for their participation. In to-
tal, we recorded 6216 different gestures, i.e., 21 participants
× 2 hands× (1 calibration + 27× 5 + 4× 3) gestures.

4.4. Data statistics
The average length of each motion sequence is 14 seconds,
with an almost equal balance between frames capturing the
left and right hands. Figure 5 shows the mean sequence
lengths across gestures. Approximately 45.1% of all frames
capture the hand in contact with the pressure-sensitive pad.
Figure 5b visualizes the ratio of contact frames with a given
vertex touching the surface, and Figure 5c shows the maxi-
mum pressure measured for each vertex. Following Grady et
al. [19], we set a threshold of 0.5 kPa as the minimum effec-
tive pressure to discard diffuse readings from the touchpad.

5. Benchmark Evaluation
Previous work estimates applied pressure maps using only
RGB images [19, 20]. With EgoPressure, we explore the ad-
vantages of incorporating accurate hand poses as additional
input, which naturally provide richer context about the inter-

action. We introduce new benchmarks for estimating hand
pressure using both RGB images and 3D hand poses. Addi-
tionally, we propose a novel network architecture that jointly
estimates, from a single RGB image, the pressure applied
to both an external surface and across the hand, providing
a deeper understanding of the regions of the hand involved
throughout the interaction.

5.1. Image-projected Pressure Baselines

We test our hypothesis that incorporating hand pose as an
additional input enhances pressure estimation. To this end,
we design a straightforward extension of PressureVision-
Net [19]. Specifically, we augment the original encoder-
decoder segmentation architecture, which was designed for
RGB inputs only, by adding an additional channel for 2.5D
hand keypoints. This involves projecting the 21 3D hand
joints onto the image plane and incorporating their depth (z-
coordinate) from the egocentric camera’s coordinate system,
scaled to millimeters.

We evaluate PressureVisionNet and the pose-augmented
network on EgoPressure in three setups: (1) trained/tested on
egocentric views, (2) trained/tested on the same exocentric
views, and (3) trained on camera views 2,3,4,5; tested on
1,6,7. In all experiments, data from 15 participants is used
for training and validation, while data from 6 participants
is held out as the test set. To evaluate the augmented net-
work, we use both the ground-truth hand joints from our
annotations and the predicted hand joints from HaMeR [54].
The HaMeR-estimated hand poses serve as a fair baseline,
reflecting the performance of state-of-the-art RGB-based
hand pose estimators, while the ground-truth joints provide
an upper bound, demonstrating the potential improvements
achievable with more accurate hand poses.

The results are summarized in Table 2. Incorporating
2.5D hand joints improves performance in both egocentric
and exocentric views and enhances generalization to unseen
camera views. Figure 8 provides additional qualitative re-
sults, demonstrating the benefits of incorporating hand pose
information. Further details on the architecture, training
process, and evaluation metrics can be found in Supp. S1.1

Model Train Eval. Modality Cont. IoU ↑ Vol. IoU ↑ MAE ↓ Temp. Acc. ↑
PressureVisionNet [19] ego. ego. RGB 55.73 38.64 53.60 91.68
[19] w. [54] pose ego. ego. RGB & pred pose 56.25 40.52 55.23 91.67
[19] w. GT pose ego. ego. RGB & GT pose 58.80 41.39 53.79 92.17
PressureVisionNet [19] exo. (2,3,4,5) exo. (2,3,4,5) RGB 62.11 44.73 43.15 93.61
[19] w. [54] pose exo. (2,3,4,5) exo. (2,3,4,5) RGB & pred pose 62,95 45,01 42,53 93,83
[19] w. GT pose exo. (2,3,4,5) exo. (2,3,4,5) RGB & GT pose 64.39 47.58 41.72 94.18
PressureVisionNet [19] exo. (2,3,4,5) exo. (1,6,7) RGB 36.82 25.05 62.22 83.40
[19] w. [54] pose exo. (2,3,4,5) exo. (1,6,7) RGB & pred pose 38,46 28,10 51,50 86,34
[19] w. GT pose exo. (2,3,4,5) exo. (1,6,7) RGB & GT pose 43.04 31.39 49.45 89.78

Table 2. Image-projected pressure estimation using different
inputs. Our high-fidelity hand pose annotations improve contact
IoU [%], volumetric IoU [%], MAE [Pa], and temporal accuracy
[%] compared to using no hand poses or HaMeR [54] hand poses
as additional input for novel exocentric and egocentric views.



Figure 8. Qualitative results. We present the egocentric exper-
iment results in Subfigure (a). In Subfigure (b), both baseline
models are trained using camera views 2, 3, 4, and 5. We display
the results for one seen view and one unseen view. Additionally, we
overlay the 2D keypoints predicted by HaMeR [54] and our anno-
tated ground truth on the input image. For better visualization, the
contour of the touch sensing area is also highlighted as a reference.

5.2. First Hand-Projected Pressure Baseline
Both the original PressureVision framework [19] and its sub-
sequent iteration, PressureVision++ [20], predict 2D hand
pressure on the image plane. However, this introduces ambi-
guity about the exact manifestation of this pressure between
hands and objects within the 3D space.

To address this, we introduce a new baseline model, Pres-
sureFormer, which estimates pressure as a UV map of a 3D
hand mesh, enabling projection both as 3D pressure onto the
hand surface and as 2D pressure onto the image space.

As illustrated in Figure 9, our model builds upon
HaMeR [54]. It processes the hand vertices Vhand in the
camera frame and the image feature tokens from HaMeR’s
Vision Transformer (ViT) [12]. A transformer-based de-
coder receives Vhand as multiple input tokens while cross-
attending to the image feature tokens from the ViT. Each
output token represents a D-dimensional feature for a corre-
sponding mesh vertex, which we then map onto a UV feature
map using the UV coordinates of the MANO model [60].
Given the sparsity of the UV feature map post-projection,
we apply two convolutional layers for neural interpolation
and reduce the dimensions to the number of force classes C
to predict the quantified UV-pressure map Upred.

Firstly, we compute the coarse UV-pressure loss Lc be-
tween Upred and the ground-truth UV-pressure map Ugt,
quantified from the scalar UV-Pressure TP of our dataset.
Subsequently, we render the pressure Ppred back onto the
original image plane using the Mhand mesh of vertices
Vhand and texture mapping the predicted Upred UV-pressure
map. Using a differentiable renderer [7], we invert the z-
normal and z-axis of the face vertices to identify the mesh
faces furthest from the camera (i.e., occluded vertices) as

places of contact. This allows us to compute the pressure loss
Lp against the ground-truth pressure Pgt. Both Lp and Lc

employ cross entropy loss. The training of PressureFormer
is supervised by a loss function defined as:

LPF = w1Lc + w2Lp. (4)

For comparison, we project the image-based pressure
maps from PressureVisionNet and its hand-pose-augmented
baseline onto the corresponding hand mesh estimated from
the same image using HaMeR [54]. Similarly, this process
involves identifying the hand mesh faces farthest from the
camera and rasterizing the 2D pressure map onto the UV
map (see Supp. Figure S2). We also evaluate a variant of
PressureFormer trained without explicit UV loss supervision.
We thus introduce a benchmarking task that assesses the
accuracy of pressure estimation on the hand surface and the
performance of jointly estimating pressure and hand mesh.

We trained our PressureFormer and baseline models using
images from all camera views of 15 participants, incorpo-
rating a hand-centered crop. During training, we applied
data augmentation techniques, including shifting, rescaling,
and rotating. We evaluated the models on a held-out test set
of six participants using (1) all camera views and (2) only
egocentric camera images. Additionally, we assessed the
generalization of the models to the test set of PressureVi-
sion [19]. We evaluate the accuracy of the estimated pressure
map in both image space and UV space when ground truth
data is available (see Supp. S1.3).
Results The results are summarized in Table 3. Pressure-
Former outperforms all image-projected pressure baselines
in Contact IoU and Volumetric IoU on the UV pressure map.
It also attains the highest Contact IoU on the image-projected
pressure map and shows better generalization to Pressure-
Vision. The hand-pose-augmented baseline, which directly
predicts pressure onto the camera image, achieves the best
Volumetric IoU on the image-based pressure map. These
results highlight the value of incorporating hand pose infor-
mation for pressure estimation and jointly estimating hand
pose and pressure for more coherent interaction modeling.
Additionally, the results underline the value of the coarse
UV-pressure loss in enhancing the accuracy of the pressure
predictions on the UV map (see Supp. Figure S3). Figure 11
provides a qualitative comparison of the UV pressure maps
estimated by the three baseline methods.
Generalization of PressureFormer PressureFormer em-
ploys a UV-pressure map that enhances the generalization
of hand contact and pressure prediction for more complex
objects. Unlike estimating pressure on the image plane,
which focuses on hand-surface interactions, the UV map
captures pressure on the hand vertices in 3D space. As Pres-
sureFormer uses the pretrained HaMeR [54] model as its
backbone to extract hand vertices and image features from
vision transformer tokens, it can effectively handle diverse
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Figure 9. PressureFormer uses HaMeR’s hand vertices and image feature tokens to estimate the pressure distribution over the UV map. We
employ a differentiable renderer [7] to project the pressure back onto the image plane by texture-mapping it onto the predicted hand mesh.

Model Eval. Dataset Im. Contact IoU ↑ Im. Vol. IoU ↑ Im. MAE ↓ Temp. Acc. ↑ UV Press. Contact IoU ↑ UV Press. Vol. IoU ↑
PressureVisionNet [19] EgoPressure (ego. & exo.) 40.71 32.11 44 90 21.53 16.41
[19] (w/ HaMeR [54]) EgoPressure (ego. & exo.) 42.52 35.40 49 92 24.10 17.36
PressureFormer (Ours) EgoPressure (ego. & exo.) 43.04 31.57 71 89 33.12 24.54
PressureFormer (w/o Lc) EgoPressure (ego. & exo.) 41.27 29.57 74 88 26.24 18.61
PressureVisionNet [19] EgoPressure (ego.) 40.65 33.91 47 87 26.59 19.81
PressureFormer (Ours) EgoPressure (ego.) 42.75 30.57 89 83 33.51 23.01
PressureVisionNet [19] PressureVision (exo.) 7.54 7.11 146 55 - -
PressureFormer (Ours) PressureVision (exo.) 29.03 21.71 121 79 - -

Table 3. Performance comparison of our PressureFormer model against image-projected pressure baselines, evaluated using temporal
accuracy [%], image-based pressure metrics (Image Contact IoU, Image Vol. IoU, Image MAE [kPa]), and UV map-based pressure metrics
(UV Pressure IoU, UV Pressure Vol. IoU). PressureFormer demonstrates superior performance in UV pressure IoU and UV Pressure Vol.
IoU, while also achieving higher scores in image-based Contact IoU. By directly predicting pressure on the UV map, PressureFormer offers
advantages, enabling accurate 3D pressure reconstruction by projecting the results onto the estimated hand surface.

hand poses while integrating hand-centric image texture in-
formation. We provide qualitative results demonstrating
PressureFormer’s ability to generalize to unseen camera con-
figurations, such as the integrated passthrough sensors of
the Quest 3 (see Figure 10), as well as to unseen real-world
objects and environments (see Supp. Figure S5).

crease the diversity of background environments to improve
generalization to real-world settings, we have added green
overlays to the background of our data capture rig and to the
pressure pad. This allows for background replacement (see
Fig. 11) and has been successfully demonstrated to enhance
commercial in-the-wild hand tracking [28, 79].

Finally, the current setup only considers single-hand in-
teractions. Incorporating scenarios involving the use of both
hands would be a natural extension of our work.

Further addressing these challenges in future research
would improve pressure estimation in real-world scenarios
and broaden its applicability.

Crop Mask&Pad Area Example 1 Example 2 Example 3

Figure 11. Examples of background augmentation using hand
masks and a touchpad.

7.0.1. Generalization of PressureFormer
Employing a UV-pressure map can improve the generaliza-
tion of hand contact and pressure prediction for more com-
plex objects. Unlike estimating pressure on the image plane,
which focuses on hand-surface interactions, UV-pressure
mapping can highlight hand-centric pressure by directly pre-
dicting pressure on the hand vertices.

Our model, PressureFormer, utilizes the pretrained
HaMeR [54] as its backbone to extract hand vertices and
image features from the vision transformer tokens. This en-
ables our approach to effectively handle diverse hand poses
while integrating hand-centric image texture information
encoded in the vision transformer tokens. The qualitative
results, shown in Figure 12, demonstrate PressureFormer’s
ability to generalize to unseen objects and environments.

In this paper, we introduce EgoPressure, a novel egocen-
tric hand pressure dataset paired with a multi-view hand pose
estimation method. EgoPressure includes precise hand poses
with meshes, multi-view RGB and depth images, egocentric
view images, and high-quality pressure data. We establish a
new benchmark and demonstrate the effectiveness of using
hand pose data in pressure estimation. For future work, we
plan to enhance our dataset by including objects to enable
pressure estimation on more complex geometries. In con-
clusion, we believe that EgoPressure represents a significant
step towards a deeper machine understanding of hand-object
interactions from egocentric views.
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Input Mesh [54] Pred. Pres. Pred. UV On Hand
PressureFormer

Figure 12. Qualitative evaluation of PressureFormer on di-
verse, real-world examples featuring various objects and scenes.
Despite being trained exclusively on EgoPressure, the model recog-
nizes pressure regions during corresponding contact events, demon-
strating its potential for generalization.

Figure 13. PressureFormer in unseen environment (input captured
via Meta Quest 3). Video will be added for camera-ready version.

Figure 10. PressureFormer on data captured with Meta Quest 3.

6. Conclusion
Limitations Despite the promising generalization of the
PressureFormer model, the EgoPressure dataset is limited
to hand interactions with flat surfaces, as capturing precise
pressure measurements on general objects without instru-
menting the user’s hands remains challenging. Additionally,
the dataset was collected indoors and consists only of single-
hand interactions. A natural extension would be to incorpo-
rate dual-hand scenarios in more diverse environments. For
a detailed discussion of these limitations, see Supp. S4).
Summary In this paper, we introduce EgoPressure, a novel
egocentric hand pressure dataset paired with a multi-view
hand pose estimation and pressure annotation method. Ego-
Pressure includes precise 3D hand meshes, multi-view RGB
and depth images, egocentric view images, and pressure in-
tensities. We establish a new benchmark and demonstrate
the effectiveness of using hand pose data in pressure estima-
tion. Furthermore, we introduce PressureFormer, a model
that directly predicts pressure on the hand mesh, along with
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Figure 9. PressureFormer uses HaMeR’s hand vertices and image feature tokens to estimate the pressure distribution over the UV map. We
employ a differentiable renderer [7] to project the pressure back onto the image plane by texture-mapping it onto the predicted hand mesh.

Model Eval. Dataset Im. Contact IoU ↑ Im. Vol. IoU ↑ Im. MAE ↓ Temp. Acc. ↑ UV Press. Contact IoU ↑ UV Press. Vol. IoU ↑
PressureVisionNet [19] EgoPressure (ego. & static) 40.71 32.11 44 90 21.53 16.41
[19] (w/ HaMeR [54]) EgoPressure (ego. & static) 42.52 35.40 49 92 24.10 17.36
PressureFormer (Ours) EgoPressure (ego. & static) 43.04 31.57 71 89 33.12 24.54
PressureFormer (w/o Lc) EgoPressure (ego. & static) 41.27 29.57 74 88 26.24 18.61

PressureVisionNet [19] EgoPressure (egocentric) 40.65 33.91 47 87 26.59 19.81
PressureFormer (Ours) EgoPressure (egocentric) 42.75 30.57 89 83 33.51 23.01

PressureVisionNet [19] PressureVision (static) 7.54 7.11 146 55 - -
PressureFormer (Ours) PressureVision (static) 29.03 21.71 121 79 - -

Table 3. Performance comparison of our PressureFormer model against image-projected pressure baselines, evaluated using temporal
accuracy [%], image-based pressure metrics (Image Contact IoU, Image Vol. IoU, Image MAE [kPa]), and UV map-based pressure metrics
(UV Pressure IoU, UV Pressure Vol. IoU). PressureFormer demonstrates superior performance in UV pressure IoU and UV Pressure Vol.
IoU, while also achieving higher scores in image-based Contact IoU. By directly predicting pressure on the UV map, PressureFormer offers
advantages, enabling accurate 3D pressure reconstruction by projecting the results onto the estimated hand surface.

PressureFormer(Ours)
Input Mesh GT Pressure PressureVision [19] [19] w. [54] pose Pred. Pressure UV Pressure 3D Pressure

Figure 10. Qualitative Results PressureFormer on our dataset.
We compare our PressureFormer with both PressureVision [19]
and our extended baseline model with HaMeR-estimated [54] 2.5D
joint positions. Additionally, we provide visualizations of the hand
mesh estimated by HaMeR, alongside the 3D pressure distribution
on the hand surface derived from our predicted UV-pressure in the
last two columns. Note that we transform the left-hand UV maps
into the right-hand format. [TK: TODO: make this as one image
pdf]

objects and interactions as these challenges are addressed.
PressureVision++ [20] explores weak labels to infer pressure
on more complex objects. However, it only considers fin-
gertip interactions and its evaluation of pressure regression
remains limited to flat surfaces due to the challenges of ac-
quiring precise pressure. We present a qualitative evaluation
of PressureFormer on a wider variety of objects in Figure 12.

Second, the current dataset was only captured in an indoor
setting. Our data capture setup is optimized for acquiring
high-fidelity annotations of hand-surface interactions. To in-

Figure 11. Qualitative Results PressureFormer on our dataset.
We compare our PressureFormer with both PressureVisionNet [19]
and our extended baseline model with HaMeR-estimated [54] 2.5D
joint positions. Additionally, we provide visualizations of the hand
mesh estimated by HaMeR, alongside the 3D pressure distribution
on the hand surface derived from our predicted UV-pressure in the
last two columns. Note that we transform the left-hand UV maps
into the right-hand format.

relevant baselines for comparison. In conclusion, we believe
EgoPressure represents an important step toward enabling
machines to better understand hand-object interactions by
capturing 3D pressure from an egocentric view.
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